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ABSTRACT
The free-streaming length of dark matter depends on fundamental dark matter physics, and
determines the abundance and concentration of dark matter haloes on sub-galactic scales. Using
the image positions and flux ratios from eight quadruply imaged quasars, we constrain the
free-streaming length of dark matter and the amplitude of the subhalo mass function (SHMF).
We model both main deflector subhaloes and haloes along the line of sight, and account
for warm dark matter free-streaming effects on the mass function and mass–concentration
relation. By calibrating the scaling of the SHMF with host halo mass and redshift using a
suite of simulated haloes, we infer a global normalization for the SHMF. We account for
finite-size background sources, and marginalize over the mass profile of the main deflector.
Parametrizing dark matter free-streaming through the half-mode mass mhm, we constrain the
thermal relic particle mass mDM corresponding to mhm. At 95 per cent CI: mhm < 107.8 M�
(mDM > 5.2 keV). We disfavour mDM = 4.0 keV and mDM = 3.0 keV with likelihood ratios
of 7:1 and 30:1, respectively, relative to the peak of the posterior distribution. Assuming cold
dark matter, we constrain the projected mass in substructure between 106 and 109 M� near
lensed images. At 68 per cent CI, we infer 2.0−6.1 × 107 M� kpc−2, corresponding to mean
projected mass fraction f̄sub = 0.035+0.021

−0.017. At 95 per cent CI, we obtain a lower bound on the
projected mass of 0.6 × 107 M� kpc−2, corresponding to f̄sub > 0.005. These results agree
with the predictions of cold dark matter.

Key words: gravitational lensing: strong – methods: statistical – galaxies: structure – dark
matter.

1 IN T RO D U C T I O N

The theory of cold dark matter (CDM) has withstood numerous tests
on scales spanning individual galaxies to the large-scale structure of
the Universe and the cosmic microwave background (Tegmark et al.
2004; de Blok et al. 2008; Hinshaw et al. 2013). The next frontier
for this highly successful theory lies on sub-galactic scales, where
CDM makes two distinct predictions: First, CDM predicts a scale-
free halo mass function, possibly down to halo masses comparable
to that of a planet (Hofmann, Schwarz & Stöcker 2001; Angulo
et al. 2017). Second, in CDM models halo concentrations decrease
monotonically with halo mass, a result of hierarchical structure
formation (Moore et al. 1999; Avila-Reese et al. 2001; Zhao et al.
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2003; Diemer & Joyce 2019). A confirmation of these predictions
through a measurement of the mass function and halo concentrations
on mass scales below 109 M� would at once constitute a resounding
success for CDM and rule out entire classes of alternative dark
matter theories.

The abundance of small-scale dark matter depends on the matter
power spectrum at early times. If the velocity distribution of the
dark matter particles causes them to diffuse out of small peaks in
the density field, this will prevent the direct collapse of overdensities
below a characteristic scale referred to as the free-streaming length
(Benson et al. 2013; Schneider, Smith & Reed 2013). The delay in
structure formation in these scenarios also suppresses the central
densities of the smallest collapsed haloes, changing the mass–
concentration relation for low-mass objects (Avila-Reese et al.
2001; Schneider et al. 2012; Macciò et al. 2013; Bose et al.
2016; Ludlow et al. 2016). By definition, free-streaming effects
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are negligible in CDM, while models with cosmologically relevant
free-streaming lengths are collectively referred to as warm dark
matter (WDM). As the free-streaming length depends on the dark
matter particle(s) mass and formation mechanism, an inference
on the small-scale structure of dark matter on mass scales where
some haloes are expected to be completely dark directly constrains
fundamental dark matter physics and the viability of specific WDM
particle candidates, including sterile neutrinos (Dodelson & Widrow
1994; Shi & Fuller 1999; Abazajian & Kusenko 2019) and keV-mass
thermal relics.

Interest in alternatives to the canonical CDM paradigm, such as
WDM, were motivated in part by apparent failures of the CDM
model on small scales (see Bullock & Boylan-Kolchin 2017, and
references therein). Two challenges in particular dominate scientific
discourse, and provide illustrative examples of the complexity
associated with testing CDM’s predictions on sub-galactic scales.
The ‘missing satellites problem’ (MSP), first pointed out by Moore
et al. (1999), refers to the paucity of observed satellite galaxies
around the Milky Way, in stark contrast to dark-matter-only N-body
simulations that predict hundreds of dark matter subhaloes hosting a
luminous satellite galaxy. Invoking free-streaming effects in WDM
to remove these small subhaloes would resolve the problem, and
hence WDM models gained traction. A second challenge to the
CDM picture emerged with the ‘too big to fail’ (TBTF) problem
(Boylan-Kolchin, Bullock & Kaplinghat 2011), which points out
that the subhaloes housing the largest Milky Way satellites are either
underdense or too small. Self-interacting dark matter, which results
in lower central densities in dark matter subhaloes (see Tulin & Yu
2018, and references therein), gained traction in part as a resolution
to the TBTF problem.

Today, new astrophysical solutions to the MSP and TBTF
problems diminish the immediate threat to CDM, but the resolutions
to these issues are riddled with assumptions regarding complicated
physical processes on sub-galactic scales. The inclusion of baryonic
feedback and tidal stripping in N-body simulations results in the
destruction of subhaloes, pushing the surviving number down to
observed levels (Kim, Peter & Wittman 2017), although recently
it has been suggested that the role of tidal stripping in N-body
simulations is artificially exaggerated by resolution effects (van
den Bosch et al. 2018; Errani & Peñarrubia 2019). The continuous
discovery of new dwarf galaxies seems to resolve the MSP, and
might even suggest a ‘too-many-satellites problem’ (Kim, Peter &
Hargis 2018; Homma et al. 2019), but the number of expected
satellite galaxies in CDM itself rests on assumptions regarding the
process of star formation in low-mass haloes, which can introduce
uncertainties larger than the differences between CDM and WDM
on these scales (Nierenberg et al. 2016; Dooley et al. 2017;
Newton et al. 2018). The inclusion of baryonic feedback from star
formation processes and supernova in low-mass haloes can reduce
halo central densities, and at least partially alleviates the issues
associated with the TBTF problem (Tollet et al. 2016). However,
the degree to which baryonic feedback resolves the problem
depends on the manner in which this feedback is implemented in
simulations.

Regarding constraints on WDM models, analysis of the Lyman-
α forest (Viel et al. 2013; Iršič et al. 2017) and the luminosity
function of distant galaxies (Menci et al. 2016; Castellano et al.
2019), while robust to the systematics associated with examining
Milky Way satellites, to some degree rely on luminous matter to
trace dark matter structure. Constraints from the Lyman-α forest
also invokes certain assumptions for the relevant thermodynamics.
The common theme is that disentangling the role of baryons and

dark matter physics on sub-galactic scales is difficult and fraught
with uncertainty. It would be ideal to test the predictions of matter
theories irrespective of baryonic physics.

Strong gravitational lensing by galaxies provides a means of
testing the predictions of dark matter theories directly, without
relying on baryons to trace the dark matter. As photons emitted from
distant background sources traverse the cosmos, they are subject to
deflections by the gravitational potential of dark matter haloes along
the entire line of sight and by subhaloes around the main lensing
galaxy. Each warped image produced by a strong lens contains a
wealth of information regarding the dark matter structure in the
Universe. The aim of this work is to extract that information.

When the lensed background source is spatially extended –
for example, a galaxy – the lensed image becomes an arc that
partially encircles the main deflector. Dark matter haloes near the
arc produce small surface brightness distortions, which allows for
the localization of the perturbing halo and enables constraints on
its mass down to scales somewhere between 108 and 109 M�
(Vegetti et al. 2014; Hezaveh et al. 2016b). Analysis of the
surface brightness fluctuations over the entirety of the arc can
also constrain the abundance of small haloes too diminutive to
be detected individually, and results in a 2 keV lower bound on the
mass of thermal relic WDM (Birrer, Amara & Refregier 2017b).
A joint analysis of individual detections and non-detections in a
sample of arc-lenses can constrain certain models of dark matter
and test the predictions of CDM (Vegetti et al. 2018; Ritondale
et al. 2019). Recently, several works have proposed measuring
the substructure convergence power spectrum by analysing surface
brightness fluctuations in extended arcs (Hezaveh et al. 2016a; Dı́az
Rivero et al. 2018; Brennan et al. 2019; Cyr-Racine, Keeton &
Moustakas 2019), and Bayer et al. (2018) applied this method to a
strong lens system.

We focus on a second kind of lens system, quadruply imaged
quasars (quads). Rather than extended arcs, the observables in quads
are four image positions and three magnification ratios, or flux ratios
(the observable is the flux ratio, not the intrinsic flux, because the
intrinsic source brightness is unknown) with unresolved sources.
Flux ratios depend on non-linear combinations of second derivatives
of the lensing potential near an image, providing localized probes of
small-scale structure down to scales of 107 M�. These systems have
been used in the past to constrain the presence of dark matter haloes
near lensed images (Metcalf & Madau 2001; Metcalf & Zhao 2002;
Amara et al. 2006; Nierenberg et al. 2014, 2017) and measure the
subhalo mass function (SHMF; Dalal & Kochanek 2002, hereafter
DK2). Recently, Hsueh et al. (2019, hereafter H19) improved on
previous analyses of quadruply imaged quasars by including haloes
along the line of sight, which can contribute a significant signal in
flux ratio perturbations (Xu et al. 2012; Gilman et al. 2018). They
found results consistent with CDM, ruling out WDM models to a
degree comparable to that of the Lyman-α forest (Viel et al. 2013;
Iršič et al. 2017).

In the case of quadruple-image lenses, the luminous source is
often a compact background object, such as the ionized medium
around a background quasar. Broad-line emission from the accretion
disc is subject to microlensing by stars, whereas light that scatters
off of the more spatially extended narrow-line region is immune to
microlensing while retaining sensitivity to the milliarcsecond scale
deflection angles produced by dark matter haloes in the range 107–
1010 M� (Moustakas & Metcalf 2003; Sugai et al. 2007; Nierenberg
et al. 2014, 2017). Likewise, radio emission from the background
quasar, while generally expected to be more compact than the
narrow-line emission based on certain quasar models (Elitzur &
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Shlosman 2006; Combes et al. 2019), is extended enough to absorb
micro-lensing effects.

We carry out an analysis of eight quads using a forward-modelling
approach we have tested and verified with mock data sets (Gilman
et al. 2018, 2019). The sample of lenses we consider contains
six systems with flux ratios measured with narrow-line emission
presented in Nierenberg et al. (2019), and two others with data
from Nierenberg et al. (2014, 2017). We expect the sample is
robust to microlensing effects and yield reliable data with which
to constrain dark matter models. None of the quads show evidence
for morphological complexity in the form of stellar discs, which
require more detailed lens modelling (Hsueh et al. 2016; Gilman
et al. 2017; Hsueh et al. 2017).

This paper is organized as follows: In Section 2, we describe our
forward-modelling analysis method and our implementation of a
rejection algorithm in Approximate Bayesian Computing. Section 3
describes our parametrizations for the dark matter structure in the
main lens plane and along the line of sight, and our modelling
of free-streaming effects in WDM. Section 4 contains a brief
description of the data used in our analysis and the relevant
references for each system. In Section 5, we describe in detail each
physical assumption we make and the modelling choices and prior
probabilities attached to these assumptions. In Section 6, we present
our inferences on the free-streaming length of dark matter and the
amount of lens plane substructure. We discuss the implications of
our results and our general conclusions in Section 7.

All lensing computations are performed using LENSTRONOMY1

(Birrer & Amara 2018). Cosmological computations involving the
halo mass function and the matter power spectrum are performed
with COLOSSUS (Diemer 2018). We assume a standard cosmology
using the parameters from WMAP9 (Hinshaw et al. 2013) (�m =
0.28, σ 8 = 0.82, h = 0.7).

2 BAY ESIAN INFERENCE IN SUBSTRUCT URE
LENSING

In this section, we frame the substructure lensing problem in a
Bayesian context, and describe our analysis method which relies
on a forward-generative model to sample the target posterior
distribution through an implementation of Approximate Bayesian
Computing. We have tested this analysis method using simulated
data (Gilman et al. 2018, 2019). The full forward-modelling
procedure we describe in this section is illustrated in Fig. 1, and
the relevant parameters are summarized in Table 1.

2.1 The Bayesian inference problem

Our goal is to obtain samples from the posterior distribution

p(qs|D) ∝ π (qs)
N∏

n=1

L(dn|qs), (1)

where qs is a set of hyper-parameters describing the subhalo and
line-of-sight halo mass functions, D denotes the set of positions
and flux ratios from a set of N lenses with the data from each lens
denoted by dn, and where π represents the prior on qs.

A certain dark matter model makes predictions for the parameters
in qs, which includes quantities such as the normalization of the
SHMF, the logarithmic slope of the mass function, a free-streaming

1https://github.com/sibirrer/lenstronomy

Figure 1. A graphical representation of the forward-modelling procedure.
The purple colours correspond to the action of sampling from a prior, blue
represents an operation performed using the parameters sampled from a
prior, and the green colours indicate the use of observed information from
the lenses. The arrow of time points from top to bottom: The first step is the
rendering of dark matter structure, while the use of the information from
observed flux ratios happens only at the very end.

cut-off, etc. For a given qs, we may generate specific realizations
of line-of-sight haloes and main deflector subhaloes (including
the halo/subhalo masses, positions, concentrations, etc.), which
affect lensing observables. We refer to a specific realization of
dark matter structure corresponding to a model specified by qs as
msub. In addition to generating the realizations msub, computing the
likelihood function L(dn|qs) in equation (1) requires marginalizing
over nuisance parameters M, which include the background source
size σ src, and the lens model that describes the main lensing galaxy
(hereafter the macromodel). Integrating over the macromodel and
the space of possible dark matter realizations msub, the likelihood
is given by

L(dn|qs) =
∫

p(dn|msub, M)p(msub, M| qs)dmsub dM. (2)

Note that we write the joint distribution p(msub, M|qs), and do not
assume the parameters in M and qs are independent.

Evaluating equation (2) is a daunting task. We highlight two main
reasons:

(i) Exploring the parameter space spanned by qs and M through
traditional MCMC methods is extremely inefficient. M is a high-
dimensional space, where the overwhelming majority of volume
does not result in model-predicted observables that resemble the

MNRAS 491, 6077–6101 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/491/4/6077/5673494 by Space Telescope Science Institute user on 07 January 2020

https://github.com/sibirrer/lenstronomy


6080 D. Gilman et al.

Table 1. Free parameters sampled in the forward model. Notation N (μ, σ ) indicates a Gaussian prior with mean μ and
variance σ , and U (u1, u2) indicates a uniform prior between u1 and u2. Lens-specific priors are summarized in Table 2.

Parameter Definition Prior

log10(Mhalo)[M�] main lens parent halo mass (lens specific)

�sub[kpc−2] normalization of SHMF (equation 7) U (0, 0.1)
(rendered between 106 and 1010 M�)

α logarithmic slope of the SHMF U (−1.95,−1.85)

log10(mhm)[M�] half-mode mass (equations 11 and 12) U (4.8, 10)
∝ to free-streaming length and thermal relic mass mDM

δlos rescaling factor for the line of sight Sheth–Tormen U (0.8, 1.2)
mass function (equation 9), rendered between 106 and 1010 M�)

σsrc[pc] source size U (25, 60)
parametrized as FWHM of a Gaussian

γ macro logarithmic slope of main deflector mass model U (1.95, 2.2)

γ ext external shear in the main lens plane (lens specific)

δxy [m.a.s.] image position uncertainties (lens specific)

δf image flux uncertainties (lens specific)

data, and in particular does not predict the correct image positions.
Thus, the overwhelming majority of samples drawn from M, and the
corresponding samples qs (even if they described the ‘true’ nature
of dark matter) would not contribute to the integral.

(ii) The parameters M describing the lens macromodel may
depend indirectly on the dark matter parameters qs through the
realizations msub generated from the model specified by qs. This
necessitates the simultaneous sampling of qs and M in the inference.
However, it is difficult to impose an informative prior on M since the
‘true’ parameters in qs are unknown. Recognizing this and using a
very uninformative prior on M, most samples will be rejected since
they do not resemble the data, which alludes back to the issue of
dimensionality described in the first bullet point.

To address these challenges, we use a statistical method that
bypasses the direct computation of the integral in equation (2).

2.2 Forward modelling the data

Rather than compute the likelihood function, we recognize that
by creating simulated observables d′

n = d′
n(msub, M) from the

model qs, and accepting the proposed qs if they satisfy d′
n = dn,

the accepted qs samples will be direct draws from the posterior
distribution in equation (1) (Rubin 1984). In this forward-generative
framework, simulating the relevant physics in substructure lensing
replaces the task of evaluating the likelihood function in equa-
tion (2). We propagate photons from a finite-size background source
through lines of sight populated by dark matter haloes, a lensing
galaxy and its subhaloes, and finally into a simulated observation
with statistical measurement errors added. Provided the forward
model contains all of the relevant physics, the simulated data d′

n

will express the same potentially complex covariances present in
the observed data.

The ‘curse of dimensionality’ that prohibits direct evaluation of
equation (2) also afflicts the criterion of exact matching between
dn and d′

n. In particular, most draws of macromodel parameters M
will not yield the observed image positions, and would therefore be
rejected from the posterior. To deal with this, our strategy will be to

ensure that the macromodel and other nuisance parameters sampled
in the forward model, when combined with the full line of sight
and subhalo populations specified by msub, yield a lens model that
predicts the same image positions as observed in the data.

Obtaining a lens model that returns the observed image positions
amounts to demanding that the four images seen by the observer
on the sky at positions θ map to the same position on the source
plane βK . This requires the use of the full multiplane lens equation
describing the path of deflected light rays (e.g. Schneider 1997, see
also Blandford & Narayan 1986)

βK = θ − 1

Ds

K−1∑
k=1

Dksαk(Dkβk), (3)

where the quantities Ds, Dk and Dks denote angular diameter
distances to the source plane, to the kth lens plane, and from the
kth lens plane to the source plane, respectively. Equation (3) is a
recursive equation for the βk that couples deflection angles from
objects at different redshifts, similar to looking through potentially
thousands of magnifying glasses in series. Throughout this process,
we account for uncertainties in the measured image positions by
sampling astrometric perturbations δxy, and applying them to the
observed image positions during the forward modelling.

To solve for macromodel parameters M, for each realization
msub we sample the power-law slope of the main deflector mass
profile γ macro and the external shear strength γ ext. If the lens system
in question has satellite galaxies or nearby deflectors, we sample
priors for their masses and positions. The remaining parameters
describing the lens macromodel2 are allowed to vary freely until a
lens model that fits the image positions is found.3

2The full set of macromodel parameters for a power-law ellipsoid are the
overall normalization bmacro, the mass centroid gx and gy, the ellipticity and
ellipticity position angle ε and θε , the external shear and shear angle γ ext

and θ ext, and the power-law slope γ macro. Nearby galaxies are modelled as
Singular Isothermal Spheres.
3The four image positions provide 4 × 2 = 8 constraints, and the
macromodel parameters that are allowed to vary freely, plus the source
position, give eight degrees of freedom.
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The approach of simultaneously sampling M and qs does not
involve lens model optimizations with respect to the observed image
fluxes, because the information from the observed fluxes is not used
at this stage of the analysis. This method therefore avoids potential
biases incurred by optimizing the macromodel with respect to the
observed fluxes, rather than marginalizing over these parameters. As
we will show in Section 6.1, by sampling M and qs simultaneously
we obtain joint posterior distributions that account for potential
covariance between these quantities, recognizing that the addition
of substructure may affect the distributions for the macromodel
parameters in M.

With a lens model that fits the image positions in hand, we
draw a background source size and ray-trace on a finely sampled
grid around each image position using equation (3) to compute
the image fluxes f ′. To incorporate statistical measurement errors
in image fluxes, we sample flux uncertainties δ f , and render these
perturbations on to the model-predicted fluxes f ′ → f ′ + δ f prior
to computing the flux ratios.

2.3 Deriving posteriors from the forward model samples

For each realization, we compute a summary statistic between the
three observed flux ratios fobs and those computed in the forward
model

Slens( f ′, fobs) ≡
√√√√ 3∑

i=1

(
f ′

i − fobs(i)

)2
, (4)

and assign this statistic to the draw of qs. This summary statistic
contains the full information content of the data, as the simultaneous
matching of the three ratios requires that the forward model
samples that minimize this statistic contain the same correlations
present in the data. We repeat this procedure between 300 000 and
1200 000 times for each quad, depending on the frequency with
which the realizations, with the statistical flux uncertainties added,
match the observed fluxes to within 1 per cent.

We select the qs parameters corresponding to the 800 lowest
summary statistics Slens. The exact matching criterion dn = d′

n,
which guarantees that the accepted samples qs form the desired
posterior, is replaced by selecting the realizations that look most
like the data through the summary statistic Slens. The resulting
distribution of qs is therefore an approximation to the posterior
distribution for each lens, with the approximation converging to the
true posterior as the number of forward model samples increases
while keeping the number of accepted samples fixed. The quality of
the approximation can be quantified through a convergence test, in
which we verify that the posteriors are unchanged as one removes
realizations from the forward-modelled data while keeping the
same number of accepted samples (see Appendix A). This method
is an implementation of a rejection algorithm in Approximate
Bayesian Computing (Rubin 1984; Marin et al. 2011; Lintusaari
et al. 2017), a technique applied to problems where it is possible
to generate simulated data from the model, but difficult to compute
the likelihood (see also Beaumont, Zhang & Balding 2002; Akeret
et al. 2015; Birrer, Amara & Refregier 2017b; Hahn et al. 2017).

To obtain the final posterior distribution p(qs|D) (equation 1),
we multiply together the likelihoods obtained for each lens.4 This

4Before taking the product, we use a Gaussian kernel density estimator
(KDE) with a first-order boundary correction (e.g. Lewis 2015) to obtain a
continuous approximation of the likelihood for each lens. We compute the

procedure is only possible when using uniform priors in the forward
model sampling, as the use of non-uniform priors would effectively
move π (qs) inside the product in equation (1) and overuse this
information. We may, however, impose any prior we wish a
posteriori by re-weighting the forward model samples accordingly.

3 TH E S U B H A L O A N D L I N E - O F - S I G H T H A L O
POPULATI ONS

In this section, we describe the models we implement for the line of
sight and SHMFs in cold and warm dark matter that we sample in the
forward model. We also describe the density profiles for individual
haloes, including their truncation radii and their distribution both
along the line of sight and in the main lens plane. We begin with the
parametrizations used for the halo and subhalo density profiles and
the spatial distribution of subhaloes in Section 3.1. In Sections 3.2
and 3.3, we describe the parametrizations of the subhalo and line-
of-sight halo functions, respectively, and in Section 3.4 describe
how we model WDM free-streaming effects.

3.1 Subhalo density profiles and spatial distribution

We model subhaloes as tidally truncated NFW profiles (Baltz,
Marshall & Oguri 2009)

ρ(r) = ρs

x(1 + x)2

τ 2

x2 + τ 2
, (5)

where x = r
rs

, τ = rt
rs

, and rt is a truncation radius and rs is the NFW
profile scale radius. We use the mass definition of M200 computed
with respect to the critical density at z = 0, and a concentration–
mass relation that accounts for free-streaming effects in WDM as
is specifically designed to accurately predict the concentrations of
low-mass haloes (see Section 3.4).

In the main lens plane, we truncate haloes according to their
three-dimensional position inside the host halo r3D through a Roche-
limit approximation that assumes a roughly isothermal global mass
profile. The relevant scaling is rt ∝ (M200r

2
3D)

1
3 (Tormen, Diaferio &

Syer 1998; Cyr-Racine et al. 2016), which we implement as

rt = 1.4

(
M200

107 M�

) 1
3
(

r3D

50 kpc

) 2
3

[kpc]. (6)

This results in truncation radii of ∼4–10rs. We note that the
truncation radius depends implicitly on the host halo mass Mhalo

through r3D, which depends on the scale radius and the virial radius
of the host halo at the lens redshift (see Fig. 4). We note that the
definition of rt in equation (6) does not depend on the structural
parameters of the subhalo, which are altered in WDM models
(see Section 3.4). Incorporating these modelling details requires
prescriptions for the tidal evolution of subhaloes in the host halo as
a function of the physical properties of the subhalo at infall (e.g.
Green & van den Bosch 2019).

We render subhaloes out to a maximum projected radius 3REin

and assign a three-dimensional z-coordinate between −r200 and
r200, where r200 is the virial radius of the host. Inside this vol-
ume, we distribute the subhaloes assuming the spatial distribution
follows the mass profile of the host dark matter halo outside an
inner tidal radius, which we fix to half the scale radius of the

bandwidth according to Scott’s factor (Scott 1992), but caution that care
should be taken with the choice of bandwidth to avoid oversmoothing or
undersmoothing the likelihood.
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host. Inside this radius, we distribute subhaloes with a uniform
distribution in three dimensions. This choice is motivated by
simulations that predict tidal disruption of subhaloes near the
lensing galaxy, resulting in an approximately uniform number of
subhaloes per unit volume in the inner regions of the halo (Jiang &
van den Bosch 2017). The spatial distribution of subhaloes that
results from this procedure is approximately uniform in projection,
which agrees with the predictions from N-body simulations (Xu
et al. 2015).

3.2 The CDM subhalo mass function

In principle, the projected mass in subhaloes near the Einstein radius
can depend on the host halo mass, redshift, and the severity of tidal
stripping by the main lensing galaxy. We will ultimately combine
the inferences from multiple lenses at different redshifts and with
different host halo masses, so we parametrize the SHMF in such
a way that a single parameter �sub can be used to simultaneously
describe the projected mass density in substructure for each quad,
regardless of halo mass or redshift.

We use the functional form for the SHMF

d2Nsub

dmdA
= �sub

m0

(
m

m0

)α

F (Mhalo, z), (7)

where scaling function F (Mhalo, z) encodes the differential evolu-
tion of the projected number density with redshift and host halo
mass, such that �sub can be interpreted as a common parameter for
all the lenses. We choose the normalization such that F (Mhalo =
1013M�, z = 0.5) = 1, anchoring �sub at z = 0.5 with a halo mass
of 1013 M�. We use a pivot mass m0 = 108 M�. We will marginal-
ize over �sub and α when quoting constraints on dark matter
warmth to account for tidal stripping of subhaloes and halo-to-halo
scatter.

To determine the scaling function F (Mhalo, z), we run a suite of
simulations using the semi-analytic modelling code GALACTICUS5

(Benson 2012; Pullen, Benson & Moustakas 2014), simulating host
haloes and their substructure in the redshift range 0.2 < z < 0.8
and mass range 0.8–3 × 1013 M�, with a subhalo mass resolution
of 108 M�. In each redshift and mass bin we simulate 24 haloes,
resulting in 840 haloes with Mhalo ∼ 1013 M� in total.6 We average
over the projected number densities along each principle axis inside
a 15 kpc aperture to obtain trends in the projected number density
with host halo mass and redshift in the vicinity of the Einstein
radius, where lensed images appear. The GALACTICUS simulations
include tidal destruction of subhaloes by the global dark matter
mass profile, which affects the evolution of the projected mass
density with host halo redshift: at early times, subhaloes are more
concentrated in the host, while at later times tidal stripping from
the host depletes the population of subhaloes at small radii and
the projected number density near the Einstein radius decreases.
In addition, the physical size of the host halo at higher redshifts
is smaller by a factor of (1 + z)−1, so the number of subhaloes
per square physical kpc is higher. We also note that early-type
galaxy host haloes simulated by Fiacconi et al. (2016) also show
significant evolution with redshift in the projected number density of
subhaloes by about a factor of two, very similar to the GALACTICUS

predictions.

5Code version 7175:2bd6b8d84a39
6The entire simulation suite using GALACTICUS completed in 1000 CPU
hours.

Figure 2. Output from the GALACTICUS semi-analytic simulations of
substructure within haloes used to calibrate the evolution of the SHMF
with halo mass and redshift. While on the y-axis we plot the actual projected
surface mass density in substructure output by GALACTICUS, we only use
the scaling with halo mass in redshift in our modelling, treating the overall
normalization of the SHMF as a free parameter. The projected mass density
in substructure on the y-axis corresponds to a mass range 106–1010 M�,
where we have extrapolated the mass function from the smallest resolved
subhalo (108 M�) to 106 M� to compute the projected mass.

We fit the evolution with halo mass and redshift predicted by
GALACTICUS with the relation

log10(F ) = k1 log10

(
Mhalo

1013 M�

)
+ k2 log10(z + 0.5) (8)

with k1 = 0.88 and k2 = 1.7. The GALACTICUS output and the fit
from equation (8) are shown in Fig. 2. We only extract information
regarding the scaling of projected mass density with halo mass
and redshift from the GALACTICUS simulations, and treat the overall
normalization of the number density as a free-parameter that absorbs
the effects of tidal destruction of subhaloes by the main lens galaxy.
We discuss our modelling assumptions in more detail in Section 5.4.

3.3 The line-of-sight halo mass function

We model line-of-sight structure by drawing halo masses from the
Sheth–Tormen halo mass function (Sheth, Mo & Tormen 2001),
with two modifications. First, we introduce an overall rescaling
factor δlos which accounts for theoretical uncertainty in the predicted
amplitude of the halo mass function (see e.g. Despali et al. 2016).
The factor δlos accounts for the possibility of a selection bias in
the quads towards systematically overdense or underdense lines of
sight. The second modification we add is a contribution from the
two-halo term ξ 2halo(Mhalo, z), which accounts for the presence of
correlated structure in the vicinity of main deflector parent dark
matter halo.7 With these modifications the line-of-sight halo mass

7In appendix A of Gilman et al. (2019), we describe how this effect is
implemented and show that this term contributes a ∼4 per cent increase in
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function takes the form

d2Nlos

dmdV
= δlos(1 + ξ2halo(Mhalo, z))

d2N

dmdV

∣∣
ShethTormen

. (9)

Haloes along the line of sight are rendered in a double-cone
geometry with opening angle 3REin, where REin is the Einstein
radius of the main deflector, and a closing angle behind the main
deflector such that the cone closes at the source redshift. Finally,
we add negative convergence sheets to subtract the mean expected
convergence from line-of-sight haloes at each line of sight plane.
Without this numerical procedure, lines of sight are systematically
overdense relative to the expected matter density of the Universe,
akin to lensing in a universe with positive curvature (Birrer et al.
2017a). This may bias results as the macromodel will attempt to
compensate for the artificial focusing of light rays in this scenario.

3.4 Modelling free-streaming effects in WDM

Free-streaming refers to the diffusion of dark matter particles out
of small peaks in the matter density field in the early Universe. This
has the effect of erasing structure on scales below a characteristic
free-streaming length which depends on the velocity distribution of
the dark matter particles, and hence on their mass and formation
mechanism. For a more in-depth discussion, see Schneider et al.
(2013).

It is convenient to express free-streaming effects in terms of the
half-mode mass mhm, which is defined in terms of the length-scale
where the transfer function between the CDM and WDM power
spectra drops to one-half. In the specific case that all of the dark
matter exists in the form of thermal relics, a one-to-one mapping
between the half-mode mass and the mass of the candidate particle
mDM exists, and has the scaling mhm ∝ m−3.33

DM (Schneider et al.
2012)

mhm(mDM) = 3 × 108
( mDM

3.3 keV

)−3.33
M�. (10)

We have run GALACTICUS models (Benson et al. 2013) with
WDM mass functions corresponding to 3.3 and 5 keV thermal
relics to investigate the effects of free-streaming on the trends with
host halo mass and redshift of the projected mass in substructure
near the Einstein radius, and determine that the fit in equation (8) is
common to both CDM and WDM. We therefore use the same scaling
function F (Mhalo, z) for WDM SHMFs, and model the effects of
free-streaming using the fitting formula from Lovell et al. (2014)

dNWDM

dm
= dNCDM

dm

(
1 + mhm

m

)−1.3
. (11)

Since the parameter mhm is related to the WDM transfer function,
it should affect the subhalo and field halo mass functions in a
similar manner. We therefore apply the same suppression factor
in equation (11) to both the SHMF and the line-of-sight halo mass
function in equations (7) and (9), respectively. Lacking a theoretical
prediction for the evolution of the turnover with redshift, we do not
evolve the shape or position of the free-streaming cut-off in the
mass function at higher redshifts.

In WDM scenarios, the delayed onset of structure formation
affects the assembly history of dark matter haloes and suppresses
their concentrations c ≡ rvir

rs

8 on mass scales that extend above mhm

the frequency of flux ratio perturbations induced by objects outside the virial
radius of the main deflector.
8We define rvir with respect to the matter density contrast 200ρcrit.

Figure 3. Top: The SHMF as a function of halo mass, redshift, and the half-
mode mass mhm = 107 M� with �sub = 0.012 kpc−2. The line-of-sight halo
mass function looks similar, but evolves differently with redshift. Bottom:
The mass–concentration relation for CDM and the same WDM model with
mhm = 107 M�. Free-streaming affects the concentration of haloes over one
order of magnitude above mhm.

(Schneider et al. 2012; Bose et al. 2016). We use the functional form
proposed by Bose et al. (2016), and write the WDM concentration–
mass relation as

cWDM(m, z)

cCDM(m, z)
= (1 + z)β(z)

(
1 + 60

mhm

m

)−0.17
(12)

with β(z) = 0.026z − 0.04, using the CDM mass–concentration
model of Diemer & Joyce (2019) and a scatter of 0.1 dex (Dut-
ton & Macciò 2014). The WDM suppression factor for the mass–
concentration relation we use was calibrated for haloes on mass
scales below M200 ∼ 109 M�, and is accurate in the redshift range
z = 0–3. We note that since flux ratios are particularly sensitive
to the central density of perturbing haloes, the suppression of
halo concentrations far above mhm (because of the factor of 60
in equation 12) is possibly the dominant effect of dark matter free-
streaming on lensing observables. We plot the SHMF and the halo
mass–concentration–redshift relation in Fig. 3.
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4 TH E DATA

We apply the forward-modelling methodology outlined in Section 2
using the physical model described in Section 3 to eight quadruply
imaged quasars. In this section, we describe the sample selection,
and how the data for these eight systems were obtained. In Table C1
in Appendix C, we summarize the data used in the analysis and
provide the relevant references.

4.1 The narrow-line systems

The quads in our sample have image fluxes measured using the
narrow-line emission from the background quasar. Six of these
(WGD 2038, WFI 2033, RX J0911, PS J1606, WGD J0405, and
WFI 2026) have flux and astrometry presented by Nierenberg et al.
(2019), while the data for B1422 and HE0435 are taken from Nieren-
berg et al. (2014) and Nierenberg et al. (2017), respectively. The
flux uncertainties for the narrow-line lenses are estimated from the
forward-modelling method used to fit the narrow-line spectra. For
additional details regarding the measurement methodology for the
narrow-line flux ratios, we refer to Nierenberg et al. (2017, 2019).

Shajib et al. (2019) analysed several systems in our sample. They
measured satellite galaxy location and provided the photometric
information for the systems J1606 and WGD J0405, which we used
to obtain photometric redshifts (see Appendix B).

4.2 Lenses omitted from our sample

We apply our analysis to a sample of eight quads, although addi-
tional systems exist in the literature with measured flux ratios. We
choose only a subset of the total number of possible lenses since the
remaining systems either do not have reliable flux measurements, or
have complicated deflector morphology that introduces significant
uncertainties in the lens modelling. We do not include lenses with
fluxes measured using radio emission from the background quasar.
Some of these systems may be analysed in a future work upon
revision of our modelling strategy and new flux measurements.

Specifically, we do not include quads with main lensing galaxies
that contain stellar discs, since accurate lens models for these
systems require explicit modelling of the disc. This excludes the
system J1330 presented by Nierenberg et al. (2019). We also exclude
HS 0810, a system with narrow-line flux measurements presented by
Nierenberg et al. (2019), because the flux from the merging images
becomes blended together for source sizes larger than 20 pc. This
complicates our analysis, as our method for computing image fluxes
with extended background sources cannot be applied to merging
pairs when the images blur together.

5 PH Y S I C A L A S S U M P T I O N S A N D P R I O R S

The parametrizations we introduce in Section 3 and the priors use
in the forward model reflect certain physical assumptions. In this
section, we describe these assumptions, and the prior probabilities
attached to each parameter in the forward model for our sample of
quads.

5.1 The extended background source

The effect of a dark matter halo of a given mass on the magnification
of a lensed image is a function of the background source size
(Dobler & Keeton 2006), see also fig. 14 in Amara et al. (2006)
and fig. 8 in Xu et al. (2012). In general, more extended background

sources are less sensitive to dark matter haloes (in terms of the
image magnifications) on the mass scales relevant for substructure
lensing, and the minimum sensitivity threshold for a halo of a given
max to produce a measurable flux perturbation is determined by the
background source size.

The lenses in our sample have fluxes measured using emission
from the narrow-line region of the background quasar (Nierenberg
et al. 2017, 2019). The narrow-line region is expected to subtend
angular scales larger than a micro-arcsecond, corresponding to
physical scales larger than ∼1 pc, such that it is immune to
microlensing by stars. This physical extent also corresponds to
a light-crossing time greater than the typical time delay between
lensed images, such that variability in the background quasar should
be washed out of the light curves if the source size is indeed large
enough to avoid microlensing.

The size of the narrow-line region typically spans up to ∼60 pc
(Müller-Sánchez et al. 2011) defined as the full width at half-
maximum (FWHM) of the radially averaged luminosity profile.
Upper limits of 50–60 pc may also be obtained by forward modelling
the spectrum of the lensed images themselves (Nierenberg et al.
2017). We therefore model the background source as a circular
Gaussian and impose a uniform prior on the FWHM between
25 and −60 pc.

5.2 Halo and subhalo mass ranges

We render haloes for both the line of sight and SHMFs in the range
106–1010 M�. Haloes with masses below 106 M� do not leave
imprints on lensing observables for the extended source sizes we
consider, which we verify by comparing distributions of image flux
ratios with different minimum subhalo masses. The smallest halo
masses flux ratios are sensitive to depend on the background source
size and the concentration of the halo, but we estimate through ray-
tracing simulations that the lower limit lies somewhere between
106 and 107 M� for the smallest source sizes we model. We include
the rare objects more massive than 1010 M� by explicitly including
them in the lens model, assuming that they host a luminous galaxy,
in which case they are detected in the observations of the lenses
themselves. This assumption is consistent with current abundance
matching techniques (Kim et al. 2018; Nadler et al. 2019).

5.3 The line-of-sight halo mass function

We use the Sheth–Tormen (Sheth et al. 2001) halo mass function
to model structure along the line of sight, with two modifications:
First, we introduce a rescaling term δlos to account for a systematic
shift in the predicted mean amplitude of the mass function. Second,
we include a term ξ 2halo(Mhalo, z) that rescales the amplitude of the
mass function near the main deflector to account for the presence of
correlated structure in the density field near the parent dark matter
halo. This results in a 5−10 per cent increase in the number haloes
near the main deflector.

Apart from uncertainty in the overall amplitude δlos, we assume
the halo mass function in the lens cone volume is well described by
the mean halo mass function in the Universe. This is a reasonable
approximation as lensing volumes span several Gpc, and we expect
fluctuations in the dark matter density along the line of sight should
average out over large distances. We note, however, that there is
some scatter among the predictions from different parametrizations
of the halo mass function below 1010 M� (e.g. Despali et al. 2016)
and cosmological model uncertainties, for instance associated with
σ 8 and �m. It is also possible that lenses are selected preferentially
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in overdense or underdense lines of sight. We use a flat prior on δlos

between 0.8 and 1.2 to account for these uncertainties.

5.4 The subhalo mass function

Our parametrization of the SHMF is an improvement over previous
modelling efforts in predicting strong lensing observables since it
explicitly accounts for the evolution of the SHMF with redshift
and halo mass, and accounts for the tidal stripping of subhaloes by
the host dark matter halo. However, since the GALACTICUS runs
do not include a central galaxy,9 we cannot predict the effects
of tidal stripping on the projected mass in substructure near the
Einstein radius, or the possible redshift and halo mass dependence
of this effect. Since tidal destruction of substructures appears to
be independent of subhalo mass (Garrison-Kimmel et al. 2017;
Graus et al. 2018), we absorb the effects of tidal stripping into the
normalization parameter �sub in equation (7). Finally, we note that
the prescription for rendering haloes outlined in Section 3 does not
couple parameters such as the truncation radius to the concentration
of subhaloes at infall, and does not model the tidal evolution of
subhaloes from the time of infall until the time of lensing. These
additional degrees of modelling complexity will be implemented in
a future analysis that uses a larger sample size of lenses.

To determine reasonable bounds on �sub, we compare the
predicted surface density in substructure obtained by integrating
equation (7) over mass with the output from N-body simulations,
and from the GALACTICUS runs. At z ∼ 0.7, the ∼1013 M� haloes in
Fiacconi et al. (2016) have projected substructure mass densities of
107 M� kpc−2 at 0.02Rvir. Fiacconi et al. (2016) show that this value
increases when accounting for baryonic contraction of the halo. The
GALACTICUS haloes contain more substructure at the same redshift
without accounting for baryonic contraction, corresponding to
projected mass densities between 2.5 × 107 and 6 × 107 M� kpc−2.
Both of these projected mass densities would likely decrease when
accounting for tidal stripping. We note, however, that recent works
call attention to possible numerical issues that can lead to the
artificial fragmentation of subhaloes in N-body simulations (van
den Bosch et al. 2018; Errani & Peñarrubia 2019). For reference,
�sub = 0.012 kpc−2 corresponds to a projected mass density of
107 M� kpc−2 at z = 0.5 in a 1013 M� halo, using equation (7).

With these considerations in mind, we use a wide, flat prior on
�sub between 0 and 0.1 kpc−2 that should encompass the theoretical
uncertainties present in the literature. We reiterate that by factoring
out the evolution with halo mass and redshift, we intend for the
parameter �sub to be common for all the lenses in our sample
with scatter from different tidal stripping scenarios and halo-to-
halo variance.

The power-law slope α of the SHMF predicted by N-body
simulations is consistently in the range −1.95 to −1.85 (Springel
et al. 2008; Fiacconi et al. 2016), and because tidal stripping
appears independent of mass the presence of a central galaxy should
not cause significant deviations from this prediction. We therefore
impose a flat prior on α between −1.95 and −1.85.

5.5 Free-streaming in WDM

The prior on mhm needs to be chosen with care since statements
using confidence intervals depend on the choice of prior. We specify

9GALACTICUS is capable of including the tidal stripping effects from a central
galaxy, but we did not include them to minimize computation costs.

the lower bound on the prior for mhm with the WDM mass–
concentration relation (equation 12) in mind, since the factor of
60 in the denominator of equation (12) results in suppressed halo
concentrations nearly two orders of magnitude above the location
of the turnover in the mass function (see Fig. 3). We choose a
lower bound for mhm at 104.8 M� that preserves the CDM-predicted
halo concentrations down to 107 M�. At 106 M�, even the coldest
mass function we model with mhm = 104.8 M� result in halo
concentrations for 106 M� objects 25 per cent lower than the CDM
prediction, but we expect the signal from these very low-mass haloes
will be sub-dominant given that we model extended background
sources which decrease sensitivity to low-mass haloes.

5.6 The parent dark matter halo mass

We use information about the mean population of early-type galaxy
lenses, as well as empirical relations between stellar mass, halo
mass, and observable quantities such as the image separations and
lens/source redshifts, to construct priors for the halo mass of each
system.

First, we estimate the ‘lensing’ velocity dispersion from the
Einstein radius and lens/source redshifts using the empirical relation
between the stellar mass and velocity dispersion derived by Auger
et al. (2010) for a sample of strong lens galaxies. We account for the
scatter between spectroscopic velocity dispersion and the ‘lensing’
velocity dispersion (Treu et al. 2006), and uncertainties in the fit by
Auger et al. (2010), and convert the estimated stellar mass into a
halo mass using the halo-to-stellar mass ratio Mhalo

M∗ = 75+36
−27 inferred

by Lagattuta et al. (2010). The typical uncertainty in the resulting
prior for the halo mass is 0.3 dex.

We use this procedure to construct a prior for the halo mass of each
quad, with the exceptions of B1422, PS J1606, and WGD J0405.
The stellar velocity dispersions implied by the Einstein radii of these
systems is significantly lower than the stellar velocity dispersion in
the sample of quads used to calibrate the halo-to-stellar mass ratio
in Lagattuta et al. (2010), and as such the estimate of the halo
mass using the above procedure may not be accurate for these
systems. For B1422, PS J1606, and WGD J0405, we therefore
assume the population mean of 1013.3 ± 0.3 M� inferred by Lagattuta
et al. (2010). We also assume the population mean halo mass for
WFI 2026 since the lens redshift used to estimate the central velocity
dispersion is very uncertain.

The system RX J0911 is known to reside near a cluster of galaxies,
and thus convergence from the cluster halo contributes to the mass
within the Einstein radius. We approximate the contribution from
the cluster convergence by noting that it should be approximately
equal to the mean external shear we infer of 0.3. We then rescale
the Einstein radius by

√
0.7, since the stellar mass scales as R2

Ein
and where we have used the fact that the mean convergence inside
the Einstein radius is approximately equal to one for an isothermal
deflector. The priors for the parent halo mass used for each quad are
listed in Table 2.

Since we explicitly model the evolution with halo mass, we vary
�sub and Mhalo independently. We note however that Mhalo and �sub

are not completely degenerate in our analysis. While the number
of lens plane subhaloes depends on both parameters, the truncation
radius of the subhaloes depends on Mhalo through the distribution of
subhalo z-coordinates, which in turn depends on the virial radius of
the parent halo (see equation 6), and the two-halo term appearing
in equation (9) depends on the halo mass as a larger halo will
have more correlated structure around it. Fig. 4 provides a visual
representation of the link between Mhalo, �sub, α, δlos, and mhm.
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Table 2. A summary of deflector zd and source zs redshifts, and satellite galaxies included in the lens model for the quads in our sample. Galaxy positions
prior marked by ∗ denote observed locations, which may differ from the true physical location due to foreground lensing effects from the lens macromodel.
We correct for foreground lensing effects in our inference pipeline (see Section 5.8). Satellite galaxy locations are quoted with respect to the light centroid of
the main deflector (see Table C1). All priors on the satellite mass G2θE

are positive definite. The raised and lowered numbers around the deflector redshifts for
PS J1606, WGD J0405, and WFI 2026 are the 68 per cent confidence intervals on the estimated lens redshifts (see Appendix B), which we marginalize over.

Lens zd zs log10Mhalo γ ext G2x G2y G2z G2θE

WGD J0405–3308 0.290.32
0.25 1.71 N (13.3, 0.3) U (0.02, 0.1) – – – –

HE0435–1223 0.45 1.69 N (13.2, 0.3) U (0.02, 0.13) ∗N (2.585, 0.05)∗ ∗N (−3.637, 0.05)∗ zd + 0.33 N (0.37, 0.03)
RX J0911+0551 0.77 2.76 N (13.1, 0.3) see Section 5.9 N (−0.767, 0.05) N (0.657, 0.05) zd N (0.2, 0.2)
B1422+231 0.36 3.67 N (13.3, 0.3) U (0.12, 0.35) – – – –
PS J1606–2333 0.310.36

0.26 1.70 N (13.3, 0.3) U (0.1, 0.28) N (−0.307, 0.05) N (−1.153, 0.05) zd N (0.27, 0.05)

WFI 2026–4536 1.041.12
0.9 2.2 N (13.3, 0.3) U (0.03, 0.16) – – – –

WFI 2033–4723 0.66 1.66 N (13.4, 0.3) U (0.13, 0.32) N (0.245, 0.025) N (2.037, 0.025) zd N (0.02, 0.005)
∗N (−3.965, 0.025)∗ ∗N (−0.025, 0.025)∗ zd + 0.085 N (0.93, 0.05)

WGD 2038–4008 0.23 0.78 N (13.4, 0.3) U (0.04, 0.12) – – – –

Figure 4. A graphical representation of the dark matter parameters in qs: α, the logarithmic slope of the SHMF, �sub, the overall scaling of the SHMF, mhm, the
WDM half-mode mass, δlos, the overall factor for the line-of-sight halo mass function, and Mhalo, the main deflector’s parent halo mass. ξ2halo is implemented

through equation (9) (see Section 3.3). These parameters are linked to the physical dark matter quantities they affect. From left to right: the SHMF d2N
dmdA

, the

normalization ρs, scale radius rs, and truncation radius rt of individual haloes (see equation 5), and the line-of-sight halo mass function d2N
dmdV

. The priors for
each of these parameters are summarized in Table 2, and discussed at length in Section 5.

5.7 The main deflector lens model

The galaxies that dominate the lensing cross-section are typi-
cally massive early-types with stellar velocity dispersions σ >

200 km sec−1 (Gavazzi et al. 2007; Auger et al. 2010; Lagattuta et al.
2010). The mass profiles of these systems are typically inferred to
be isothermal, or close to isothermal (Treu et al. 2006, 2009; Auger
et al. 2010; Shankar et al. 2017). These observations motivate
a simple parametrization for the main deflector lens model, the
singular isothermal ellipsoid plus external shear. We generalize this
model to a power-law ellipsoid with a variable logarithmic slope
γ macro to account for uncertainties associated with the mass profile of
the lensing galaxy, and the model-predicted flux ratios. We assume

a flat prior on the power-law slope γ macro between 1.95 and 2.2 for
each deflector (Auger et al. 2010).

In addition to the logarithmic slope of the main deflector mass
profile, we sample values for the external shear strength γ ext. The
prior for γ ext is chosen on a lens-by-lens basis by first sampling
the macromodel parameter space without subhaloes to determine
a reasonable starting range for γ ext. The width and centre of the
prior is adjusted after adding substructure such that the posterior
distribution of γ ext obtained for each lens is contained well within
the bounds of the prior. The specific priors used for each system
are summarized in Table 2. Finally, we use a Gaussian prior for
the mass centroid of each quad centred on the main deflector light
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with a variance of 0.05 arcsec, a typical modelling uncertainty
for quadruple-image systems (Nierenberg et al. 2019; Shajib
et al. 2019).

Several studies (Evans & Witt 2003; Hsueh et al. 2016, 2017,
2018; Gilman et al. 2017) explore the role of complicated main
deflector morphologies on the model predicted flux ratios. As image
magnifications are local probes of the gravitational potential, if there
are fluctuations in the surface mass profile on scales comparable
to the image separation these structures can affect the image
magnifications. In particular, stellar discs, if they go unnoticed,
can result in systematically inaccurate lens models. With deep
Hubble Space Telescope (HST) images of the narrow-line quads
in our sample, we can confirm that they do not contain discs, and
indeed are representative of the massive elliptical galaxies with
roughly isothermal mass profiles that typically act as strong lenses
(Auger et al. 2010; Shankar et al. 2017). Gilman et al. (2017)
and Hsueh et al. (2018) quantified the systematic uncertainties
introduced by modelling early-type galaxy lenses as isothermal
ellipsoids with fixed logarithmic slopes γ = 2. These works found
that the resulting systematic uncertainties on image magnifications
are typically less than 10 per cent. This degree of uncertainty is
comparable to the variance in model-predicted image magnifi-
cations resulting from marginalizing over a power-law ellipsoid
mass model with additional degrees of freedom implemented
through a variable logarithmic slope γ (Nierenberg et al. 2019).
Based on these considerations, we use a power-law ellipsoid with
variable logarithmic slopes γ to model the main deflector mass
profile.

Three quads in our sample do not have measured spectroscopic
redshifts. For two of these, we use photometry from Shajib et al.
(2019) to compute photometric redshifts probability distributions
with the software EAZY (Brammer, van Dokkum & Coppi 2008),
and sample the deflector redshift from these distributions in the
forward model. For the third system (WFI 2026), which does
not have multiband photometry from Shajib et al. (2019), we
assume a typical velocity dispersion for a massive elliptical galaxy,
and derive a probability distribution for the lens redshift from
measured quantities such as the source redshift and measured
image separation. We give more details regarding this procedure
in Appendix B.

5.8 Satellite galaxies and nearby deflectors

We model satellite galaxies and other deflectors near the main
lens as Singular Isothermal Spheres, and assume they lie at the
lens redshift unless they have measured redshifts that place them
elsewhere. We marginalize over the position and Einstein radius of
these objects using Gaussian priors on the positions centred on the
light centroid with a variance of 0.05 arcsec. We use a Gaussian prior
on the Einstein radius which is estimated from lens model fitting,
or in some cases by direct measurements on the central velocity
dispersion (e.g. Wong et al. 2017; Rusu et al. 2019).

In the cases of HE0435 and WFI 2033, the nearby galaxy lies at a
higher redshift than the main lens plane. The light from the galaxy
is therefore subject to lensing by the main deflector, and its true
physical location differs from its observed position. We estimate the
true physical locations of these objects by sampling the macromodel
parameter space using the image positions as constraints, and
read out the physical position of background satellite given its
observed (lensed) position. We then place the satellite at this derived
physical location in the forward model sampling with uncertainties
of 0.05 arcsec. This process significantly speeds up the lensing

computations since it does not require the continuous re-evaluation
of the physical satellite location given its observed position during
each lens model computation.10 The boost in speed comes at the
cost of decoupling the satellite galaxy position from the dark matter
parameters qs in the inference, but we expect the covariance between
these quantities will be negligible because the satellite galaxies, even
when their locations are corrected for foreground lensing effects,
are relatively far from the images, introducing convergence at the
main deflector light centroid of <0.1 in both cases.11

In the case of HE0435, we estimate the angular location without
foreground lensing of the satellite to be (−2.37, 2.08), while
for WFI 2033 we obtain (−3.63, −0.08), for observed (lensed)
locations of (−2.911, 2.339) and (−3.965, −0.022), respectively.
These coordinates are with respect to the galaxy light centroid (see
Table C1). The angular locations of the lensed background satellites
are closer to the mass centroid of the main deflector, just as the
physical location of the lensed background quasar is concentric
with the mass centroid.

The lens-specific priors on satellite galaxies are summarized in
Table 2.

5.9 Lens-specific modelling for RX J0911+0551 and WGD
2038–4008

For system RX J0911, we alter the modelling strategy slightly to
increase computational efficiency by allowing the external shear
strength γ ext to vary freely while solving for macromodel parame-
ters that fit the observed image positions. For the system WGD 2038,
we widen the prior on the power-law slope of the macromodel as
the posterior using the default range for γ macro between 1.95 and
2.2 is biased towards higher values of γ macro. For WGD 2038, the
posterior peaks at γ macro ∼ 2.25.

6 R ESULTS

In this section, we present the results of our analysis. We begin in
Section 6.1 by showing dark matter halo convergence maps for some
of the top-ranked realizations drawn in the forward model. We then
display the posterior distributions for a few individual lenses, show-
ing the simultaneous inference of parameters describing the macro
lens model and the dark matter hyper-parameters. In Section 6.2,
we present the constraints on the abundance of substructure and
dark matter warmth for the full sample of 11 quads.

6.1 Top-ranked realizations and posteriors for individual
lenses

Minimizing the summary statistic in equation (4) selects realizations
that resemble the observed data as closely as possible. This
guarantees that the set of accepted dark matter hyper-parameters

10The physical location of the nearby galaxy needs to be continuously re-
evaluated because it’s observed location depends on the foreground lensing
effects from the macromodel, and the parameters describing the macromodel
are continuously changing while finding a solution to the lens equation
(equation 3).
11The default convention in LENSTRONOMY is to place deflectors at their
observed angular locations in the Universe, but it is now possible (in code
versions 0.8.0 +) to specify which objects should be treated using the
observed (lensed) position instead. We note that the default convention in
LENSMODEL (Keeton, Kochanek & Seljak 1997) is to place objects at their
observed (lensed) locations during multiplane ray-tracing.
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qs yield an accurate approximation of the true posterior distribution
for each individual lens with data dn: p(qs|dn). For visualization
purposes, and to reinforce the fact that the top-ranked realizations
look like the data and satisfy Slens ≈ 0 (equation 4), in Fig. 5 we
display the dark matter halo effective multiplane convergence maps
for some of the top-ranked realizations for a subset of quads in our
sample. The effective multiplane convergence is defined as half the
divergence of the full deflection field α

κeffective ≡ 1

2
∇ · α. (13)

This definition of the multiplane convergence accounts for the non-
linear effects present in multiplane lensing, and satisfies the single-
plane definition of convergence as second derivatives of a lensing
potential in the absence of multiple lens planes.

To visualize individual realizations of dark matter structure,
we define κeffective(halo) ≡ κeffective − κmacro, where κmacro is the
convergence from the lens macromodel, including satellite galaxies
and nearby deflectors. In the resulting convergence maps, haloes
located behind the main lens plane appear sheared tangentially
around the Einstein radius due to coupling to the large deflections
produced by the macromodel.

In Fig. 5, we show κeffective(halo) maps of randomly selected real-
izations of dark matter structure whose corresponding qs parameters
were accepted in the final posterior on the basis of their summary
statistic Slens. The specific realizations and the corresponding dark
matter parameters qs correspond to a diverse set of substructure
populations, warm and cold, which yield similarly good fits to the
observed flux ratios satisfying Slens ∼ 0. Some models, however, pre-
dict flux ratios that match the observed flux ratios more frequently
than others. In terms of the Approximate Bayesian Computing
algorithm described in Section 2, the frequency with which one dark
matter model relative to another predicts observables that resemble
the data is a surrogate for the relative likelihood of the models.
The probability of accepting a proposed qs based on the summary
statistic in equation (4) is therefore equal to the likelihood p(dn|qs)
(equation 2), even though the form of this function is unknown and
it is never directly evaluated.

The top-ranked realizations for B1422 shown in Fig. 5 each
have a relatively massive dark matter halo, or several smaller ones,
located near the top left merging triplet image with (normalized)
flux 0.88. This is in agreement with the analysis by Nierenberg et al.
(2014), who find that a blob of dark matter near this image brings
the model-predicted flux ratios into agreement with a smooth lens
model.

Although not obvious from examining Fig. 5, the underlying
macromodels for each accepted realization are unique, with dif-
ferent external shears, power-law slopes, lens ellipticity, etc. We
marginalize over different macromodel configurations by simulta-
neously sampling the macromodel parameters and the dark matter
hyper-parameters in the forward model. To illustrate, in Figs 6, 7,
and 8 we show the posterior distributions for several parameters in
the lens macromodel, along with the dark matter hyper-parameters
�sub and mhm for HE0435, WFI 2033, and RX J0911. The system
HE0435 generally favours models with low SHMF normalizations
(low �sub), or a turnover in the mass function with higher �sub. The
system WFI 2033 is the opposite, with a posterior favouring CDM-
like mass functions with many lens plane subhaloes. The system
RX J0911 lies somewhere in between, with a peak in the posterior
distribution of mhm near 107 M�.

For each of these systems, in particular WFI 2033, there is a
visibly obvious covariance between the overall normalization of

the main deflector mass profile bmacro,12 and the parameters �sub

and mhm. This covariance is readily understood: To reproduce the
observed image positions, the macromodel responds to the addition
of mass in the form of subhaloes in main lens plane by decreasing
the overall normalization of the main deflector mass profile, and
hence these quantities are anticorrelated. Similarly, WDM models
correspond to macromodels with larger bmacro because WDM
realizations contain fewer subhaloes. Interestingly, there is some
structure in the posterior distribution for the lens ellipticity ε in
WFI 2033, and both mhm and �sub.

By simultaneously sampling the lens macromodel and dark
matter hyper-parameters, we obtain posterior distributions that
account for covariance between M and qs. We do not use lens
model priors from more sophisticated lens modelling efforts (e.g.
Wong et al. 2017; Shajib et al. 2019) because these analyses did
not include substructure in the lens models and therefore do not
account for covariances between the macromodel parameters and
the dark matter parameters of interest. For the same reason, we do
not decouple the lens macromodel parameters from the dark matter
hyper-parameters by first sampling the macromodel parameter
space that fits the image positions, and using these distributions
as priors in the forward modelling.

6.2 Constraints on the free-streaming length of dark matter

For each quad, we obtain a joint likelihood between the macro-
model parameters M and the dark matter-hyper parameters qs. We
marginalize over the parameters in this 20+dimensional space to
obtain the four-dimensional space of qs parameters that includes
logarithmic slope of the SHMF α, the scaling of the line-of-sight
halo mass function δlos, the overall scaling of the SHMF �sub, and
the half-mode mass mhm. We reiterate that these four parameters
describe universal properties of dark matter and should therefore
be common to all the lenses, while the parameters M and the halo
mass Mhalo are lens-specific. After marginalizing, we compute the
product of the resulting likelihoods and obtain the desired posterior
distribution in equation (1), which we display in Fig. 9.

The marginalized constraints on mhm rule out mhm > 107.8 M� at
2σ , corresponding to thermal relic particle mass of < 5.2 keV. It is
apparent from Fig. 9 that mhm and �sub are correlated, since haloes
added by increasing the normalization can be subsequently removed
by increasing mhm such that the total amount of lensing substructure
remains relatively constant. As a result, the marginalized distribu-
tion for the normalization �sub appears unconstrained from above,
as the normalization can be significantly higher in WDM scenarios.
With only eight quads we cannot simultaneously measure mhm and
�sub, although our previous forecasts indicate this is possible with
more lenses (Gilman et al. 2018).

The constraints on dark matter warmth in terms of confidence
intervals depend on the range of allowed values specified by the
prior on �sub. Similarly, the confidence interval on mhm depends
on the lower bound of this parameter that is set by the prior on
mhm. As discussed in Section 5.5, we have chosen the prior on mhm

to encompass the region of parameter space where the data can
constrain mhm, keeping in mind that the WDM mass–concentration
relation affects the central densities of subhaloes 60 times above
mhm (equation 12), and the upper bound of �sub = 0.1 kpc−2

is a conservative choice as most N-body simulations and the

12bmacro has units of convergence, or projected mass density divided by the
critical surface mass density for lensing.
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Strong lensing constraints on dark matter 6089

Figure 5. Dark matter halo effective multiplane convergence maps for some of the highest ranked realizations for the subset of quads B1422, WGD J0405,
WFI 2033, and RX J0911, each of which has flux ratios inconsistent with smooth lens models. The definition of the effective multiplane convergence takes into
account the non-linear effects present in multiplane lensing, and is defined with respect to the mean dark matter density in the Universe such that some regions
are underdense (blue), while other regions (specifically, dark matter haloes) are overdense (red). The SHMF normalization, line-of-sight normalization, halo
mass and half-mode mass are displayed for each realization. The green text/circles denote observed image positions and fluxes, while the black text/crosses
denote the model positions and fluxes. The forward-model data sets fit the image positions and fluxes to within the measurement uncertainties.
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6090 D. Gilman et al.

Figure 6. Joint posterior distribution for a subset of M and qs parameters for the system HE0435. We display the normalization of the main deflector lens model
bmacro, the external shear strength and position angle γ ext and θ ext, the deflector ellipticity ε, the power-law slope of the main deflector mass profile γ macro, the
Einstein radius of the satellite galaxy G2θE

, the normalization of the SHMF �sub, and the half-mode mass mhm. We simultaneously sample the distributions of
these parameters to account for covariance between the macromodel and the dark matter hyper-parameters qs. The vertical lines denote 95 per cent confidence
intervals.

GALACTICUS runs predict values below 0.05 kpc−2. In light of these
complications, we also quote likelihood ratios which do not depend
on the choice of prior. Relative to the peak of the mhm posterior, we
obtain likelihood ratios for WDM with mhm = 108.2 M� (mhm =
108.6 M�) of 7:1 (30:1).13

The posterior for δlos indicates the data favour more line-of-
sight structure, but the preference is not statistically significant. The

13We remind the reader that the relative heights of the peaks in the posterior
somewhat depend on the binning method, or in this case the bandwidth
estimator of the KDE. In this work, we have applied a KDE with a first-
order boundary correction and a bandwidth selected according to Scott’s
factor (Scott 1992).

parameters δlos and �sub are anticorrelated, as one would expect as
one can, to a certain degree, remove lens plane subhaloes and replace
them with line-of-sight haloes while keeping the total amount of flux
perturbation constant. This is not a perfect degeneracy, however,
since lensing efficiency and the relative number of subhaloes and
line-of-sight haloes changes with redshift. Thus, a larger sample
of quads at different redshifts could break the covariance between
�sub and δlos.

6.3 Constraints on the subhalo mass function assuming CDM

We perform a suite of CDM simulations using the same priors listed
in Table 2, minus the WDM parameter mhm, with the aim of inferring

MNRAS 491, 6077–6101 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/491/4/6077/5673494 by Space Telescope Science Institute user on 07 January 2020
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Figure 7. Joint posterior distribution for a subset of M and qs parameters for the system WFI 2033. The parameters are the same as in Fig. 6. In addition to
the main deflector we model two additional nearby galaxies, with Einstein radii G2θE (1) and G2θE (2). We show the distributions of the Einstein radius for the
larger nearby galaxy (G2θE (2)), whose position we correct for foreground lensing effects (see Section 5.8).

�sub. We marginalize over δlos, and over a theoretical-motivated
prior on α (between −1.95 and −1.85) based on predictions from
N-body simulations (Springel et al. 2008; Fiacconi et al. 2016).

The inference on �sub is shown in Fig. 10. We infer �sub =
0.055 kpc−2, with a 1σ confidence interval 0.029 < �sub <

0.083 kpc−2. At the 2σ level we obtain �sub > 0.008 kpc−2. We
do not quote an upper 2σ bound on �sub as it is prior dominated.
To put these numbers in physical units, the mean value of �sub

corresponds to a mean projected mass in substructure for the lenses
in our sample between 106 and 109 M� of 4.0 × 107 M� kpc−2, and
the 1σ confidence interval corresponds to 2.0−6.1 × 107 M� kpc−2.
At 2σ , the projected mass constraint is �sub > 0.6 × 107M�kpc−2.
To convert into the average projected mass, we have computed the

average of the projected masses for each of the eight lenses in our
sample, using the scaling of the halo mass function with redshift in
equation (8) while assuming a halo mass of 1013 M�.

7 D I SCUSSI ON AND C ONCLUSI ONS

In this section, we review the main results of this work and discuss
the implications for cold and warm dark matter. In Section 7.1, we
summarize our main results, and in Section 7.2, we compare our
results with those obtained in previous works. In Section 7.3, we
discuss the sources of systematic uncertainty in our analysis, and
we conclude in Section 7.4 by discussing the implications of our
result for cold and warm dark matter.
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Figure 8. Joint posterior distribution for a subset of M and qs parameters for the system RX J0911. The parameters are the same as in Fig. 6.

7.1 Summary of the analysis and main results

We have carried out a measurement of the free-streaming length
of dark matter and the SHMF using a sample of eight quadruply
imaged quasars. The methodology we use to constrain the dark
matter parameters of interest has been tested and verified with
simulated data (Gilman et al. 2019). Lenses that show evidence for
morphological complexity in the form of stellar discs are excluded
from our analysis. We model haloes both in the main deflector and
along the line of sight, including correlated structure around the
main deflector through the two-halo term, and account for evolution
of the projected SHMF with redshift and halo mass using a suite
of simulations using the semi-analytic modelling code GALACTI-
CUS. We compute image flux ratios by ray-tracing to finite-size
background sources, which correctly accounts for the sensitivity of
image flux ratios to perturbing haloes. We also marginalize over
the macromodel parameters for each system, including the power-

law slope of the main deflector, and simultaneously constrain the
lens macromodel and dark matter hyper-parameters to account for
covariance between these quantities. In addition to the turnover
in the halo mass function, we model WDM free-streaming effects
on the mass–concentration relation, accounting for the effect of
reduced central densities of WDM haloes on lensing observables.

The main results of this analysis are summarized as follows:

(i) We constrain the half-mode mass mhm (thermal relic dark
matter particle mass) to mhm < 107.8 M� (mDM > 5.2 keV) at 2σ .
Since the confidence intervals depend on the prior used for both
mhm and �sub, we also quote likelihood ratios relative to the peak
of the posterior distribution for mhm: we disfavour mhm = 108.2 M�
(mDM = 4 keV) with a likelihood ratio of 7:1, and with mhm =
108.6 M� (mDM = 3.0 keV) the relative likelihood is 30:1. These
bounds are marginalized over the amplitude of the SHMF, the
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Figure 9. Marginal and joint posterior distributions for the dark matter hyper-parameters δlos, α, �sub, and mhm, which represent the overall scaling of the
line-of-sight halo mass function, the logarithmic slope of the SHMF, the global normalization of the SHMF that accounts for evolution with halo mass and
redshift (see equation 7), and the half-mode mass mhm relevant to WDM models. The contours show 68 per cent and 95 per cent confidence intervals, while the
dot–dashed lines on the marginal distributions show the 95 per cent confidence intervals.

amplitude of the line-of-sight halo mass function, the power-law
slope of the SHMF, the parent halo mass, the background source
size, and the parameters describing the main deflector mass profile.

(ii) Assuming CDM, we infer a value of the global amplitude of
the SHMF�sub = 0.0550.032

−0.027kpc−2 at 1σ , and �sub > 0.008kpc−2

at 2σ . In our lens sample, these values correspond to an average
projected mass density in substructure between 106 and 109 M� of
4.0+2.1

−2.0 × 107M�kpc−2 and a lower bound of 0.6 × 107 M� kpc−2,
respectively. At fixed redshifts, for a 1013 M� halo at z = 0.2 (z =
0.6) the 1σ constraint corresponds to a projected mass in substruc-
ture of 1.9+0.9

−0.9 × 107 M� kpc−2 (4.1+2.0
−2.0 × 107 M� kpc−2) in the

subhalo mass range 106–109 M�. The 2σ constraint corresponds to
a projected mass in substructure of greater than 0.3 × 107 M� kpc−2

(0.6 × 107 M� kpc−2) in the same mass range.

7.2 Discussion and comparison with previous work

7.2.1 Constraints on dark matter warmth and the amplitude of the
CDM subhalo mass function

The first comprehensive analysis of multiply-imaged quasars was
carried out by DK2, who inferred a projected mass fraction in sub-
structure f̄sub

14 in the range 0.006 < f̄sub < 0.07 at 2σ modelling

14Throughout this section, we will use f̄sub to refer to the average mass
fraction in substructure inferred from a sample of multiple lenses in haloes
of different masses at different redshifts, and fsub to refer to the mass fraction
in substructure implied by a certain �sub value at a specific redshift and halo
mass.
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Figure 10. Inference on the global normalization of the SHMF �sub

assuming CDM, marginalized over the logarithmic slope α and uncertainty
in the overall amplitude of the line-of-sight halo mass function δlos. The
blue dashed lines shows the mean of the marginal distribution, while the
black solid (dashed) lines represent 68 per cent and 95 per cent confidence
intervals. The contours in the joint distribution also represent 68 per cent and
95 per cent confidence intervals.

only lens-plane substructure, and assuming CDM. Recently, H19
improved on the analysis of DK2 by including the effects of line-
of-sight haloes, measuring 0.006 < f̄sub < 0.018 at 1σ with a mean
of 0.011 assuming CDM, and also constrained the free-streaming
length of dark matter to mhm < 108.4 (mDM > 3.8 keV).

The 2σ bound from H19 of mhm < 108.4 M� is weaker than the
constraint from this work mhm < 107.8 M�. One possible reason
for this difference is that unlike previous work (Birrer et al. 2017b;
Gilman et al. 2018, 2019) H19 did not model the suppression of the
mass–concentration relation in WDM scenarios, which suppresses
the lensing signal more than one order of magnitude above the
position of the turnover in the mass function. This is of particular
relevance for flux ratio studies because the effect of a perturbing dark
matter halo depends on its central density profile. Free-streaming
effects on the mass–concentration relation therefore increase the
relative differences between CDM and WDM on the scales relevant
for substructure lensing, which leads to greater constraining power
over WDM models. Finally, we note that in a future analysis
modelling the tidal evolution of substructures from the time of
infall to the time of lensing may introduce additional constraining
power over WDM models by coupling the structural parameters of
subhaloes at the time of lensing to their structural properties, such
as concentration, at the time of infall.

To facilitate direct comparison between this analysis and that of
DK2 and H19 regarding the constraints on the SHMF assuming
CDM, we convert our �sub values into estimates of f̄sub by
computing the projected mass density �, and then using the fact that

�
�crit

= 0.5 near the Einstein radius, where �crit is the critical surface
mass density for lensing. In these conversions, we also assume a halo
mass of 1013 M�, and take care to compute f̄sub using the same mass
range 106–109 M� used by H19. Our 2σ bounds on �sub correspond
to an average mass fraction in substructure f̄sub > 0.005 with a

mean of f̄sub = 0.035. At 1σ 0.018 < f̄sub < 0.056. This result is
statistically consistent with the constraints from H19, and also with
those of DK2.

There are several key differences between our analysis and those
of H19 and DK2 that pull in opposite directions in terms of con-
straining power over dark matter models. As mentioned previously
we model free-streaming effects on the mass–concentration relation,
and include the contribution from the two-halo term to account
for correlated structure near the main deflector. These pieces of
additional physics add information and increase our constraining
power over WDM models. On the other hand, accounting for
finite-size background sources decreases the expected magnification
signal caused by dark matter haloes and subhaloes, and we expect
to infer a higher normalization of the SHMF in our analysis as
more substructure is needed to produce the same degree of flux
perturbation. Explicitly, by ray-tracing to finite-size background
sources we find that the peak of the magnification cross-section
for a 5 × 107 M� halo is reduced by a factor of two for a 15 pc
background source relative to a 5 pc background source, and by
a factor of three for a 40 pc source. The simplifying assumption
of point-sources for the background quasar invoked by H19 and
DK2 introduces signal from low-mass haloes whose effects would
otherwise be washed out by an extended source.

The tidal truncation of lens plane subhaloes that we model may
also reduce the overall impact of subhaloes on lensing observables.
We also marginalize over the power-law slope of the main deflector
and simultaneously sample the macromodel parameters and the
dark matter hyper-parameters. These processes introduce additional
covariances in the posterior distributions, and should lead to weaker
constraints on �sub and mhm.

Other lensing studies, primarily those using the technique of
gravitational imaging, have also sought to measure the SHMF.
Vegetti et al. (2014) inferred f̄sub = 0.00640.0080

−0.0042 at 1σ in the mass
range 4 × 106–4 × 109 M� assuming a prior on the slope of
the SHMF centred on α = −1.9, while Hezaveh et al. (2016b)
constrained the normalization of SHMF assuming α = −1.9,
inferring f̄fsub values comparable to the median f̄sub = 0.02 result
from DK2 (and our constraint), but with larger uncertainties.

To compare with the analysis of Vegetti et al. (2014), we assume
a halo mass of 1013 M� at a lens redshift zd = 0.25 and a source
at zsrc = 0.7, characteristic values for the lens sample analysed by
Vegetti et al. (2014). Using these values with our expression for
the SHMF in equation (7), we obtain fsub = 0.014+0.008

−0.007 between
4 × 106 and 6 × 109 M� at 1σ , in the same mass range used by
Vegetti et al. (2014). This result is consistent with that of Vegetti
et al. (2014).15 We quote constraints on fsub to make comparisons
with previous work, but we caution that the conclusions derived
from inferences of fsub should be interpreted with care. The phys-
ical meaning of this parameter depends on specific assumptions
regarding the subhalo mass range and the contribution from dark
substructure to the convergence near the Einstein radius, which may
change with halo mass and redshift.

Comparing our results with semi-analytic simulations of massive
1013 M� hosts, our results in terms of the projected mass in
substructure is consistent with the GALACTICUS simulations used
to calibrate the evolution of the SHMF with halo mass and redshift.

15Although Vegetti et al. (2014) did not model line-of-sight haloes, the low
lens/source redshifts of their sample lessen the impact of line-of-sight haloes
on the inferred subhalo mass fraction such that we may compare our results,
which include line-of-sight haloes, with theirs.
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We stress that our model was not tuned to match the normalization
predicted by GALACTICUS, it only made use of the trends of projected
substructure mass density with host halo mass and redshift.

Our results are also consistent with N-body simulations of
1013 M� haloes by Fiacconi et al. (2016), who predict projected
substructure mass densities of 2.0−2.8 × 107 M� kpc−2 after ac-
counting for baryonic contraction of the halo. We infer roughly triple
the predicted mass in substructure than the amount predicted by Xu
et al. (2015), who simulated 1013 M� haloes by rescaling Milky Way
size and cluster size hosts to halo masses of ∼1013 M�. Finally,
we note that our results arrive on the heels of several works that
examine numerical features of N-body simulations that may result in
the artificial fragmentation of subhaloes (van den Bosch et al. 2018;
Errani & Peñarrubia 2019). Taken at face value, these results suggest
that N-body simulations may underpredict substructure abundance
in dark matter haloes.

We may also compare our constraints with the projections from
Gilman et al. (2019). With a sample of 10 quads, they projected a 2σ

bound on mhm with �sub = 0.022 kpc−2 of 107.7 M� with 2 per cent
uncertainties in image fluxes, and 108.6 M� with 6 per cent uncer-
tainties. Our constraint of mhm < 107.8 M� is broadly consistent with
these predictions,16 given the higher mean �sub value of 0.055 kpc−2

we infer in this analysis, and the flux uncertainties in the lens sample
which are ∼6 per cent on average.

The overall scaling of the line-of-sight halo mass function δlos

is unconstrained with our sample size and choice of prior. This is
likely because the prior on δlos spans a relatively limited range of
±20 per cent around the Sheth–Tormen mass function prediction,
and with the current sample size of only eight quads we cannot
constrain departures from the Sheth–Tormen prediction at the level
of 10−20 per cent.

7.3 Sources of systematic uncertainties

7.3.1 The lens macromodels

Several works (Gilman et al. 2017; Hsueh et al. 2018) have
investigated the ability of smooth isothermal mass models plus
external shear to fit the smooth mass component of galaxy scale
strong lenses. These works reach similar conclusions, determining
that isothermal models predict image flux ratios to better than
10 per cent unless a stellar disc is present, in which case explicit
modelling of the disc is required (e.g. Hsueh et al. 2017, 2018).
Each of these analysis restricted the smooth lens models to exactly
isothermal mass density profiles.

The deflectors in our sample show no evidence for morphological
complexity that would require explicit modelling beyond a power-
law ellipsoid model. Specifically, we exclude all lens systems with
known stellar discs to avoid any bias they may introduce. To account
for remaining uncertainties associated with the lens macromodel,
we highlight two features of our lens modelling implemented in
an effort to mitigate this source of systematic uncertainty. First,
we note that flux ratios are highly localized probes of the surface
mass density in the immediate vicinity of the lensed images, and
therefore the main requirement for this work is to accurately predict
the mass profile in these four small isolated regions. By relaxing the

16The conversion between the half-mode mass and the mass of the corre-
sponding thermal relic dark matter particle used by Gilman et al. (2019) is
off by a factor of h = 0.7, but the comparison between the half-mode masses
is robust.

strictly isothermal mass profile assumption and marginalizing over
the logarithmic slope of the main deflector mass profile, we allow for
the local mass profile in the vicinity of the lensed images to vary.
The additional degree of freedom added in the lens macromodel
increases our uncertainties, but accounts for deviations from power-
law ellipsoids limited to exact ρ(r) ∝ r−2 mass profiles.

Second, we note that smooth power-law models predict a dis-
tribution of flux ratios, rather than single values (for example, see
figs A1–A8 in Nierenberg et al. 2019). Following common practice,
Gilman et al. (2017) and Hsueh et al. (2018) identified flux ratio
‘anomalies’ with respect to a single smooth model fit to lensed
images, a procedure that does not account for the distribution of flux
ratios predicted by smooth lens models that is marginalized over in
the full forward-modelling analysis we perform. In this work, we
also take care to explore the macromodel parameter space and the
dark matter hyper-parameter space simultaneously, which accounts
for additional covariances that contribute to the model-predicted
flux uncertainties.

7.3.2 Modelling of the dark matter content

We assume specific functional forms for the halo and SHMFs
(equations 7 and 9), and the mass–concentration–redshift relation
(equation 12). We acknowledge that there are other parametrizations
in the literature for both of these quantities (e.g. Schneider et al.
2012; Benson et al. 2013), but in this work we implement only one
parametrization of WDM effects on the mass function (equation 11)
and halo concentrations (equation 12), which corresponds to one
specific WDM model. We note that additional physics, such as the
velocity dispersion of dark matter particles in the early Universe,
can alter the shape of the mass function, but with the current sample
size of lenses it is unlikely we have enough information to constrain
these additional features if they were included in the model.

It is possible that free-streaming effects on the halo mass function
near the half-mode mass scale may become more pronounced
at high redshifts. This could affect both the location and shape
of the turnover in the mass function. However, in the absence
of a specific prediction for the evolution of the turnover with
redshift, we apply the parametrization in equation (11) through
the relevant redshift range z = 0–3.5. We note that since the
lensing efficiency of haloes decreases approaching source redshift,
systematic errors from possible redshift evolution of the WDM
turnover will be correspondingly down-weighted. We note that the
mass–concentration–redshift relation for WDM calibrated by Bose
et al. (2016) that we implement does evolve with redshift, as does the
CDM mass–concentration relation from Diemer & Joyce (2019).

7.4 Implications for WDM models

Galaxy–galaxy strong lensing provides a useful compliment to the
strongest existing probe of the free-streaming length of dark matter
from the Lyman-α forest (Viel et al. 2013; Iršič et al. 2017). Our
2σ bound on the thermal relic mass of mDM > 5.2 keV surpasses
than the 3.3 keV constraint from Viel et al. (2013) and matches the
5.3 keV constraint from Iršič et al. (2017), who invoked additional
assumptions regarding the relevant thermodynamics. The key point
of this comparison, however, is not so much which method achieves
the most precision, but the fact that both methods provide stringent
limits and that they are completely independent of each other in ob-
servational data and astrophysical assumptions. Independently and
in combination, the results from lensing and the Lyman-α forest sup-
port the following statement: the halo mass function extends down
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in a scale-free manner to mass scales of ∼108 M�, where haloes
are mostly, if not completely, dark. There appears to be little room
left for a viable WDM solution to the small-scale issues of CDM.
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A P P E N D I X A : C O N V E R G E N C E O F T H E
POSTERI OR D I STRI BUTI ONS

The approximation of the true posterior obtained in Approximate
Bayesian Computing (ABC) algorithms converges to the true pos-
terior distribution as the acceptance criterion becomes increasingly
more stringent. In our framework, changing the acceptance criterion
is equivalent to reducing the number of forward model samples
while keeping the number of total accepted realizations fixed. We
exploit this property to test for convergence of the posteriors.

In Figures A1 and A2, we compare posteriors constructed from
the full set of forward model samples with others derived from a
depleted set of forward model samples, where we have discarded
one-third of the realizations and accepted the same rejection crite-
rion (accept the realizations corresponding to the 800 lowest values
of Slens) to those that remain. The mass of the posterior distributions
remains relatively unchanged, and the 1σ and 2σ contours are nearly
identical. We conclude we have generated enough realizations of
dark matter structure to reliably construct posterior distributions
using the ABC rejection algorithm described in Section 2.
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Figure A1. A convergence test of the posterior distributions. By discarding one-third of the forward model samples and applying the same rejection criterion
to those that remain, we verify the inference obtained through the ABC rejection algorithm is robust.
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Figure A2. A convergence test of the posterior distributions assuming CDM. Like Fig. A1, one-third of the samples are discarded and the same number of
realizations are accepted into the posterior.

APPENDIX B: O BTAINING DEFLECTO R
REDSHIFTS

The quads PS J1606 and WGD J0405 do not have measured
spectroscopic redshifts, so we use photometry from Shajib et al.
(2019) to obtain photometric redshift estimates. The photometry
from Shajib et al. (2019) comes in three bands: F160W, F814W,
and F475X with magnitude uncertainties of 0.1–0.3 dex. We use
the software package EAZY (Brammer et al. 2008), and restrict the
templates to only consider the SEDs for early-type galaxies, which
are 90 per cent of galaxies acting as strong lenses. We verify this
procedure is accurate by applying it to other deflectors in sample
analysed by Shajib et al. (2019) that have measured spectroscopic
redshifts, and then proceed to derive PDFs for deflector redshifts in
the systems PS J1606 and WGD J0405.

The results are shown in Fig. B1. The top row shows four quads
from the sample analysed in Shajib et al. (2019) with measured
spectroscopic redshifts, and the bottom row shows the PDF’s output
by EAZY for the systems PS J1606 and WGD J0405.

The system WFI 2026 does not have a photometric redshift, and
the photometry available in the literature comes in only one or two
bands with larger uncertainties. For this system, we use the equation
for isothermal mass profiles relating the Einstein radius REin, source
redshift zs, lens redshift zd, velocity dispersion σ , and speed of
light c

REin = 4π
(σ

c

)2 Dds(zd, zs)

Ds(zs)
, (B1)

where Dds and Ds are angular diameter distances between the lens
and the source, and the observer and the source, respectively.
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Figure B1. PDFs for main deflector redshifts computed with the software
EAZY and photometry from Shajib et al. (2019), restricting the photometry
templates to those of early-type galaxies. The top rows show four applica-
tions of this procedure to quads with measured spectroscopic redshifts (red
dotted lines). The bottom row shows the results of this procedure, using the
same photometry and template assumptions, applied to the quads PS J1606
and WGD J0405, which do not have spectroscopic redshift measurements.

Figure B2. The PDF for the deflector redshift of WFI 2026 obtained by
assuming a velocity dispersion of 240 ± 30 km s−1 and a roughly isothermal
mass profile.

We sample a Gaussian distribution of velocity dispersions typical
of early-type galaxies 240 ± 30kms−1, evaluate the right-hand side
of equation (B1), and numerically solve for the lens redshift that
yields the resulting angular diameter distance. The resulting PDF
shown in the bottom right panel of Fig. B2 peaks around zd =
1, for the measured values REin = 0.67 arcsec, zs = 2.2. We have
experimented with placing WFI 2026 at various specific redshifts,
but find the posteriors for �sub, δlos, α, and mhm are unchanged
within the uncertainties.

APPENDI X C : DATA

We summarize the data used in this analysis, and the references
for the astrometry, fluxes or flux ratios, and the corresponding
uncertainties, and satellite galaxies or nearby nearby deflectors in
Table C1.
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Table C1. The data used in this analysis. Letters A–D correspond to the lensed images, while G is the
galaxy light centroid. The priors sampled for the satellite galaxies or nearby deflectors are quoted in
Table 2. Discovery papers are marked with a †.

Lens Image dRA dDec. NL flux

WGD J0405–3308 A 1.066 ± 0.003 0.323 ± 0.003 1.00 ± 0.04
Nierenberg et al. (2019) B 0 ± 0.003 0 ± 0.003 0.65 ± 0.04
†Anguita et al. (2018) C 0.721 ± 0.003 1.159 ± 0.003 1.25 ± 0.03

D − 0.157 ± 0.003 1.021 ± 0.003 1.17 ± 0.04
G 0.358 ± 0.05 0.567 ± 0.05 –

HE0435–1223 A 2.424 ± 0.008 0.792 ± 0.008 0.97 ± 0.05
Nierenberg et al. (2017) B 1.458 ± 0.008 − 0.456 ± 0.008 0.98 ± 0.049
Wong et al. (2017) C 0 ± 0.008 0 ± 0.008 1 ± 0.048
†Wisotzki et al. (2002) D 0.768 ± 0.008 1.662 ± 0.008 0.54 ± 0.056

G 1.152 ± 0.05 0.636 ± 0.05 –

RX J0911+0551 A 0 ± 0.003 0 ± 0.003 0.56 ± 0.04
Nierenberg et al. (2019) B 0.258 ± 0.003 0.405 ± 0.003 1.00 ± 0.05
†Bade et al. (1997) C − 0.016 ± 0.003 0.959 ± 0.003 0.53 ± 0.04
Blackburne et al. (2011) D − 2.971 ± 0.003 0.791 ± 0.003 0.24 ± 0.04

G − 0.688 ± 0.05 0.517 ± 0.05 –

B1422+231 A 0.387 ± 0.005 0.315 ± 0.005 0.88 ± 0.01
Nierenberg et al. (2014) B 0 ± 0.005 0 ± 0.005 1.00 ± 0.01
†Patnaik et al. (1992) C − 0.362 ± 0.005 − 0.728 ± 0.005 0.474 ± 0.006

D 0.941 ± 0.01 − 0.797 ± 0.01 –
G 0.734 ± 0.01 − 0.649 ± 0.01 –

PS J1606–2333 A 1.622 ± 0.003 0.589 ± 0.003 1.00 ± 0.03
Nierenberg et al. (2019) B 0 ± 0.003 0 ± 0.003 1.00 ± 0.03
Shajib et al. (2019) C 0.832 ± 0.003 − 0.316 ± 0.003 0.59 ± 0.02
†Lemon et al. (2018) D 0.495 ± 0.003 0.739 ± 0.003 0.79 ± 0.02

G 0.784 ± 0.05 0.211 ± 0.05 –

WFI 2026–4536 A 0.164 ± 0.003 − 1.428 ± 0.003 1.00 ± 0.02
Nierenberg et al. (2019) B 0.417 ± 0.003 − 1.213 ± 0.003 0.75 ± 0.02
†Morgan et al. (2004) C 0 ± 0.003 0 ± 0.003 0.31 ± 0.02

D − 0.571 ± 0.003 − 1.044 ± 0.003 0.28 ± 0.01
G − 0.023 ± 0.05 − 0.865 ± 0.05 –

WFI 2033–4723 A − 2.196 ± 0.003 1.260 ± 0.003 1.00 ± 0.03
Nierenberg et al. (2019) B − 1.484 ± 0.003 1.375 ± 0.003 0.65 ± 0.03
Vuissoz et al. (2008) C 0 ± 0.003 0 ± 0.003 0.50 ± 0.02
†Morgan et al. (2004) D − 2.113 ± 0.003 − 0.278 ± 0.003 0.53 ± 0.02

G − 1.445 ± 0.05 2.344 ± 0.05 –

WGD 2038–4008 A − 2.306 ± 0.003 1.708 ± 0.003 1.00 ± 0.01
Nierenberg et al. (2019) B 0 ± 0.003 0 ± 0.003 1.16 ± 0.02
†Agnello et al. (2018) C − 1.518 ± 0.003 0.029 ± 0.003 0.92 ± 0.02

D − 0.126 ± 0.003 2.089 ± 0.003 0.46 ± 0.01
G − 0.832 ± 0.05 1.220 ± 0.05 –

This paper has been typeset from a TEX/LATEX file prepared by the author.
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