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ABSTRACT

We estimate the mass of the Milky Way (MW) within 21.1 kpc using the kinematics of halo globular clusters
(GCs) determined by Gaia. The second Gaia data release (DR2) contained a catalogue of absolute proper
motions (PMs) for a set of Galactic globular clusters and satellite galaxies measured using Gaia DR2 data. We
select from the catalogue only halo GCs, identifying a total of 34 GCs spanning 2.0 ≤ r ≤ 21.1 kpc, and
use their 3D kinematics to estimate the anisotropy over this range to be β = 0.46+0.15

−0.19, in good agreement,
though slightly lower than, a recent estimate for a sample of halo GCs using HST PM measurements further out
in the halo. We then use the Gaia kinematics to estimate the mass of the MW inside the outermost GC to be
M(< 21.1 kpc) = 0.21+0.04

−0.03× 1012M�, which corresponds to a circular velocity at rmax of vcirc(21.1 kpc) =

206+19
−16km s−1. The implied virial mass is Mvirial = 1.28+0.97

−0.48 × 1012M�. The error bars encompass the
uncertainties on the anisotropy and on the density profile of the MW dark halo, and the scatter inherent in the
mass estimator we use. We get improved estimates when we combine the Gaia and HST samples to provide
kinematics for 46 GCs out to 39.5 kpc: β = 0.52+0.11

−0.14, M(< 39.5 kpc) = 0.42+0.07
−0.06× 1012M�, and Mvirial =

1.54+0.75
−0.44×1012M�. We show that these results are robust to potential substructure in the halo GC distribution.

While a wide range of MW virial masses have been advocated in the literature, from below 1012 M� to above
2× 1012 M�, these new data imply that an intermediate mass is most likely.

Keywords: dark matter – Galaxy: fundamental parameters – Galaxy: halo – Galaxy: kinematics and dynamics
– Galaxy: structure – globular clusters: general

1. INTRODUCTION

The mass of the Milky Way (MW) is one of its most funda-
mental parameters, and yet, despite decades of intense effort,
our best estimates are significantly scattered, with some esti-
mates agreeing very well, and others differing by more than
their uncertainties (see Bland-Hawthorn & Gerhard 2016, for
a thorough review). These estimates are very sensitive to as-
sumptions made in the modelling, including, but not limited
to, which of the MW’s satellites are bound or unbound and
for how long they have been bound, the velocity anisotropy of
the MW halo and of its satellite system, the shape of the MW
halo, and the particular method used for the analysis. Esti-
mates typically range from as low as ∼ 0.5× 1012 M� (e.g.
Watkins et al. 2010, radial anisotropy with Leo I unbound) to
as high as 2−3×1012M� from abundance-matching studies
(e.g. Boylan-Kolchin et al. 2010), the timing argument (Li &
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White 2008; van der Marel et al. 2012b), or studies of trac-
ers (e.g. Watkins et al. 2010, tangential anisotropy with Leo
I bound).

Accurate determination of the mass profile of the MW has
implications for our understanding of the dynamical history
of the Local Group (both past evolution and future interac-
tions, e.g. van der Marel et al. 2012b,a) and the MW’s satel-
lite population, particularly the Sagittarius dSph and its im-
pressive tidal stream (Fardal et al. 2019), and the Magellanic
Clouds (Kallivayalil et al. 2013).

Furthermore, the mass of a galaxy and its distribution (or
shape) are intrinsically linked to the formation and growth
of structure in the Universe (Conselice 2014), so accurately
determining these parameters for the MW will give us a
clearer understanding of where our Galaxy sits in a cos-
mological context (for an excellent review see Freeman &
Bland-Hawthorn 2002). In particular, we can know whether
the MW is typical or atypical, and thus, how much of what we
learn about the MW can be safely assumed for other galaxies
as well.
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The MW is composed of a central nucleus that harbours a
supermassive black hole (SMBH) at its heart, a bulge, a disk,
and a halo (Ivezić et al. 2012; Bland-Hawthorn & Gerhard
2016). The first three components are all primarily baryonic
in nature, and while many of their properties remain topics
of some debate, their masses are reasonably well determined.
The final component, the halo, is dominated by dark matter
(DM) – only a few percent of the mass of the halo is baryonic
(Helmi 2008), the exact percentage depends on the unknown
total mass of DM in the halo – and it is our inability to see
DM directly that gives rise to our present uncertainty in the
mass.

As the majority of mass in the MW is ‘invisible’, we can-
not measure it directly, instead we can infer its presence by its
influence on its surroundings. Typically, this is the purview
of dynamical studies. Any mass distribution gives rise to a
gravitational potential that causes objects to move: by study-
ing measurements of the motions of the objects, we can work
backwards to recover the underlying gravitational potential
and, thus, the mass distribution.

There are some mass-estimation methods, notably the tim-
ing argument and abundance-matching studies, that esti-
mate the total mass of a system. However, most dynamical
methods work by using tracer objects to probe the proper-
ties of the whole system, and can only estimate the mass
over the range for which tracer data are available. Thus
different families of tracers provide crucial information at
different points depending on the range they cover. This
is particularly crucial in the MW where globular clusters
(GCs) tend to probe the inner regions of the halo, while
dwarf spheroidal (dSph) satellite galaxies offer better cover-
age further out (e.g., Wilkinson & Evans 1999; Watkins et al.
2010; Patel et al. 2018). The modelling of multiple stellar
streams may provide a promising alternative (e.g., Gibbons
et al. 2014; Sanderson et al. 2017), though six-dimensional
phase space data is only available for the GD-1 stream at
present (Koposov et al. 2010; Bowden et al. 2015).

One key problem with mass estimation via kinematics is
that we need to know the total velocity of each tracer, but
we are seldom fortunate enough to have all 3 components of
motion for a large sample of tracers. Typically, we only have
line-of-sight (LOS) velocities. This is especially troublesome
for studies of the MW as the Sun is very close to the Galac-
tic Centre, and so for most objects LOS velocities predomi-
nantly probe only one component of the motion (the Galacto-
centric radial direction) and offer little information about the
Galactocentric tangential motions of the tracers1. With only

1 The degree to which the LOS and Galactocentric radial velocities are
similar depends on the geometry of the system, specifically the position of
the object relative to both the Sun and the Galactic Centre, and there are
a few objects with more favourable geometry to give some insight on the

LOS velocities, the masses we estimate depend very strongly
on what assumptions we make for the tangential motions:
the well-known mass-anisotropy degeneracy (e.g. Binney &
Tremaine 2008).

Some methods attempt to overcome the lack of 3D velocity
information: Eadie et al. (2015) introduced a Galactic Mass
Estimator that includes unknown velocity components as free
parameters in their models. However, the best constraints on
mass will come from having complete phase space informa-
tion and, with proper motions (PMs), we are able to break
this degeneracy. Firstly, we can make a direct estimate of the
velocity anisotropy, and secondly, we can correctly include
the total velocity of the tracers in our mass calculations in-
stead of having to make assumptions.

Absolute PMs have been measured from the ground for a
number of GCs (e.g. Casetti-Dinescu et al. 2013, and other
papers in the series), although typically this is only possi-
ble with sufficient accuracy for objects within ∼10 kpc, and
even then ground-based measurements often suffer from a
number of systematic effects. Space offers a more stable en-
vironment for astrometry, so thanks to its excellent precision
and long time baseline, the Hubble Space Telescope (HST)
has proved extremely valuable for providing absolute PMs
for dSphs (e.g. Piatek et al. 2016; Sohn et al. 2017) and GCs
(e.g. Anderson & King 2003; Kalirai et al. 2007). The recent
study by Sohn et al. (2018) that measured PMs using HST for
20 outer halo GCs in the MW represents the largest sample
of absolute PMs measured to date in a single study.

The Gaia mission’s (Gaia Collaboration et al. 2016a) first
data release (Gaia Collaboration et al. 2016b) contained
proper motions for ∼2 million stars in the Tycho-Gaia As-
trometric Solution (TGAS) catalogue (Michalik et al. 2015),
which used Tycho2 (Høg et al. 2000) measurements to pro-
vide a first epoch of data and Gaia data for the second, and
has been used already for multiple PM studies of objects in
the MW, including for a handful of Galactic GCs. Watkins
& van der Marel (2017) identified member stars for 5 GCs
in the TGAS data and used the stars to estimate the abso-
lute PMs of their host clusters; comparing these Gaia PMs
with previous estimates, they found excellent agreement with
previous HST measurements, but some differences to previ-
ous ground-based values due to systematics inherent in such
measurements. Massari et al. (2017) used archival HST data
combined with Gaia DR1 data to estimate the PM of GC
NGC 2419.

However, the second Gaia data release (Gaia Collaboration
et al. 2018a) has greatly expanded our view of the local Uni-
verse. This data release provides PMs for billions of stars and

tangential motions. However, anisotropy measurements rely on averaging
over many objects, so favourable geometry for a few objects provides limited
benefit overall.
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has made it possible to measure absolute PMs for 75 Galac-
tic GCs out to a Galactocentric distance of ∼21 kpc, along
with 9 classical dSphs, a single ultrafaint dwarf, and both
the Large and Small Magellanic Clouds (Gaia Collaboration
et al. 2018b). This is by far the largest catalogue of GC and
dSph PMs to date. Combined with position and LOS velocity
information from previous studies, these measurements have
enabled analysis of the orbits of these objects.

In this paper, we use these motions to provide new mass
estimates for the MW. In section 2, we describe the Gaia cat-
alogues, calculate the Galactocentric motions of the objects,
and describe which objects we select for our analysis; in sec-
tion 3, we estimate the mass of the MW; in section 4, we
compare our results with previous estimates; and in section 5,
we summarise our findings.

2. OVERVIEW OF DATA

2.1. Gaia Halo Cluster Sample

Gaia Collaboration et al. (2018b) used the the Gaia DR2
Catalogue (Gaia Collaboration et al. 2018a) to identify mem-
ber stars for a number of MW GCs and dSphs based on their
positions, photometry, and PMs, from which their absolute
PMs were calculated2. Combined with distances and line-of-
sight velocities, it was then possible to calculate the orbit of
each object within the Galaxy. The orbits derived do depend
on certain assumptions made for the potential of the Galaxy,
which, as we have discussed, is still somewhat uncertain. To
mitigate the effects of this uncertainty, orbits were calculated
in 3 different potentials that span a range of possible MW
shapes and masses. We will use both the absolute PMs and
the orbital properties here.

The first step is to calculate Galactocentric positions and
motions from the observed heliocentric values. We take
right ascensions, declinations, and the PMs in these coordi-
nates, along with the full covariance matrix for the PM uncer-
tainties from Gaia Collaboration et al. (2018b).3 Distances
and LOS velocities, we take from (Harris 1996, 2010 edi-
tion), which are primarily determined photometrically; these
distances generally agree with kinematical distances deter-
mined from HST PM studies (Watkins et al. 2015). We as-
sume distance uncertainties ∆D = 0.023D, which is equiv-
alent to uncertainties on the distance moduli of 0.05 mag,
which is typical for GC distance uncertainties (Dotter et al.
2010). There are a few GCs in the Harris catalogue for
which there is an LOS velocity measurement but no uncer-
tainty listed. For the GCs with uncertainties, the average
is ∆vLOS = 0.06vLOS, which we thus adopt for the re-

2 Catalogues from https://www.astro.rug.nl/∼ahelmi/research/dr2-dggc/
3 We have not included the Gaia systematic errors of ∼0.035 mas/yr as,

at the distances we are considering, these errors translate to a few km/s and
will be very much smaller than the velocity dispersion of the halo.

maining GCs. We assume a distance from the Sun to the
Galactic Centre of R� = 8.29 ± 0.16 kpc and a circu-
lar velocity at the solar radius of V� = 239 ± 5 km s−1

(both McMillan 2011). For the solar peculiar velocity rel-
ative to the Local Standard of Rest, we assume Vpec =

(11.10±1.23, 12.24±2.05, 7.25±0.62) km s−1 (Schönrich
et al. 2010). We will use these solar parameters throughout
the paper.

We calculate the positions and velocities of the GCs in a
spherical coordinate system (radius r, latitude θ, and longi-
tude φ) centred on the Galactic Centre. We use Monte Carlo
sampling, using 1000 samples and assuming Gaussian uncer-
tainties, to propagate all of the observational uncertainties –
this includes the full covariance matrix for the PMs, uncer-
tainties of the distances and LOS velocities, and the all uncer-
tainties on the position and velocity of the Sun. Although the
initial distributions are assumed Gaussian, the resulting dis-
tributions of Galactocentric properties may not be, so we take
medians and 15.9 and 84.1 percentiles of the distributions as
the best estimate and uncertainties.4 These Galactocentric
positions and velocities are provided in Appendix A.

One of the main contributors to the uncertainty in the
mass of the MW is the paucity of tracer objects. The dSphs
are limited in number and appear to have been accreted in
groups (Gaia Collaboration et al. 2018b), which is an ex-
tremely interesting result but makes mass modelling tricky as
certain key assumptions are thus invalidated. For the GCs, on
the other hand, the improvements in PM accuracy offered by
Gaia over HST (where such data exists) are modest with only
22 months of Gaia data. Where Gaia can play a key role here
is to provide Galactocentric motions for many more clusters
than were previously available, greatly increasing our sample
size. As such, we choose to concentrate on the GC sample
henceforth.

To probe the anisotropy and mass of the Galactic halo,
we require a sample of halo clusters, free of disk and bulge
contaminants. Zinn (1993) showed that the disk and bulge
clusters separate cleanly from the halo clusters in metal-
licity. We use the same cut and keep only clusters with
[Fe/H] ≤ −0.8 dex (metallicities from Harris 1996, 2010
edition) so as to have a pure halo sample. Furthermore,
the mass estimators we will use assume that the potential is
scale-free over the region of interest, so we wish to limit our-
selves to clusters for which this assumption reasonably holds,
that is we do not wish to include clusters that spend most
of their time in the innermost regions of the Galaxy where

4 For Gaussian distributions, the 15.9 and 84.1 percentiles enclose the 1-
σ confidence interval. The posterior distributions we derive thoroughout are
generally not Gaussian, so that these uncertainties should be interpreted as
actual percentiles ranges, with any analogy to Gaussian errors only being
approximate at best.

https://www.astro.rug.nl/~ahelmi/research/dr2-dggc/
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the disk is a significant contributor and the potential is non-
spherical. We use the orbital parameters from Gaia Collab-
oration et al. (2018b) to extract only GCs with apocentres5

rapo ≥ 6 kpc6; this leaves us with 34 GCs that span a radial
range 2.0 ≤ r ≤ 21.1 kpc.

2.2. HST Halo Cluster Sample

Recently, Sohn et al. (2018) presented HST PMs for 20
halo GCs that extend further out into the halo than the Gaia
cluster sample. Four of these are in common with the Gaia
Collaboration et al. (2018b) sample: NGC 2298, NGC 5024,
NGC 5053, and NGC 5466. The HST estimates are in good
agreement with the Gaia estimates for three of the four clus-
ters, which is reassuring news for both catalogues. The mea-
surements for the fourth cluster differ by∼48 km s−1 but this
is still well below the velocity dispersion of the halo (see Ta-
ble 1). This also indicates that we can confidently combine
the catalogues and increase the size of our sample and its
range. This is an improvement on both analyses as the Gaia
catalogue probes further in and the HST catalogue probes fur-
ther out, but they also have a substantial region of overlap to
serve as a solid anchor and consistency check.

We follow our approach from Sohn et al. (2018) and ex-
clude NGC 2419 as its distance is much greater than the rest
of the sample7, and three of the four clusters associated with
the Sagittarius dSph as they represent a group, not a well
mixed population (and including all four can again lead to
biases). We also choose to use the Gaia values for the clus-
ters in common. Overall, this gives us an extra 12 clusters in
our sample, bringing the total to 46, and increasing the radial
range of the sample to 2.0 ≤ r ≤ 39.5 kpc.

In what follows, we will provide analysis using only the
Gaia cluster sample (Sample A), and using the combined
Gaia and HST cluster samples (Sample B).

Figure 1 shows the distribution of the Galactocentric ve-
locities of the halo GC sample as a function of Galactocentric
distance. The upper three panels show the radial vr, latitudi-
nal vθ, and longitudinal vφ velocity components. The next

panel shows the tangential velocity where vt =
√
v2θ + v2φ,

and the bottom panel shows the total velocity v. The red cir-
cles, orange diamonds, and green stars show the halo GCs in
the Gaia DR2 sample. The blue triangles and cyan squares
show the halo GCs from HST measurements. The different

5 Orbits were calculate in 3 different potentials; we insisted that at least 2
of the 3 apocentre estimates must pass the cut.

6 As we will see later, this value is equivalent to two disk scale lengths for
our adopted disk model. We experimented with different halo samples, and
found that our results were not sensitive to the particular choice of apocentre
cut that we used.

7 As mass estimates depend strongly on r, a single cluster far out in the
halo can unduly bias any mass estimates.
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Figure 1. Galactocentric velocity distributions as a function of
Galactocentric distance of the halo GCs, from top to bottom:
Galactocentric radial velocities, Galactocentric latitudinal veloci-
ties, Galactocentric longitudinal velocities, Galactocentric tangen-
tial velocities, Galactocentric total velocities. In all panels, red
circles, orange diamonds, and green stars show the Gaia measure-
ments and the cyan squares and blue triangles show the HST mea-
surements. Orange diamonds (Gaia) and cyan squares (HST) high-
light the GCs with vtan ≥ 250 km s−1, and the green stars highlight
the clusters tentatively identified as part of a recent merger – these
subsamples are discussed in later sections. Uncertainties are shown
in the figure but are too small to be visible in most cases.
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groupings identify various subsamples that we will use later
to verify the robustness of results against substructure.

3. MILKY WAY MASS

We can use the Galactocentric positions and motions of
the clusters to estimate the mass of the Milky Way within the
radius of the outermost cluster in our sample, which lies at
rmax = 21.1 kpc. Watkins et al. (2010) introduced a fam-
ily of simple, yet effective, tracer mass estimators (TMEs),
which we will use here. Subsequent extensions and applica-
tions of this method were presented in Annibali et al. (2018)
in a study of NGC 4449, and in Sohn et al. (2018) in a similar
study of MW halo GCs.

The estimators work with different types of distance and
velocity data, depending on what is available. As we have
full 6D phase-space information for our cluster sample, we
are able to use the estimator that uses distances and total ve-
locities, equation 24 of Watkins et al. (2010). That is,

M (< rmax)TME =
α+ γ − 2β

G (3− 2β)
r1−αmax

〈
v2rα

〉
. (1)

The estimators assume that the underlying potential is a
power law with index α over the region of interest, that the
tracer objects have a number density distribution that is a
power law with index γ over the region of interest, and that
the velocity anisotropy of the tracer sample is a constant β
over the region of interest. Before we can proceed, we need
to estimate α, β, and γ.

3.1. Anisotropy

In section 2, we calculated Galactocentric motions vj of all
the clusters in our sample in a spherical coordinate system
(j, k = {r, θ, φ}), along with a full covariance matrix for
their uncertainties δj and the correlations between the uncer-
tainties ρjk. That is, for each cluster i, we have a velocities

vi = (vr, vθ, vφ)i (2)

with uncertainties

Si =

 δ2r ρrθδrδθ ρrφδrδφ

ρrθδrδθ δ2θ ρθφδθδφ

ρrφδrδφ ρθφδθδφ δ2φ


i

. (3)

We assume that the cluster population has a mean velocity

v = (vr, vθ, vφ) (4)

and covariance

C =

 σ2
r 0 0

0 σ2
θ 0

0 0 σ2
φ

 (5)

−0.5 0.0 0.5

β

0

1

2

P
(β

)

0.46+0.15
−0.19

Figure 2. The posterior distribution of anisotropy β for the Gaia
DR2 halo cluster sample.

where (vr, vθ, vφ) are the mean velocities and (σr, σθ, σφ)

the velocity dispersions for each coordinate. In setting the
cross-terms of the covariance to zero, we have assumed that
the axes of the velocity ellipsoid are aligned with the spher-
ical coordinate system. We further assume that the velocity
distributions are Gaussian. Then the likelihood of the ob-
served measurements for mean v and covariance C is,

L =

N∏
i

exp
[
− 1

2 (vi − v)
T

(C + Si)
−1

(vi − v)
]

√
(2π)

3 |(C + Si)|
. (6)

We use flat priors for the mean velocities in each coordi-
nate, that is

P (vj) = 1. (7)

We insist that the dispersions must be positive, but otherwise
use a flat prior for positive dispersion values, that is

P (σj) =

{
1 σj ≥ 0

0 σj < 0
(8)

Finally, the posterior is the product of the likelihood and the
priors.

To estimate the means and dispersions that best describe
the data, we use the affine-invariant Markov Chain Monte
Carlo (MCMC) package EMCEE (Foreman-Mackey et al.
2013) to find the region of parameter space where the poste-
rior is maximised and to sample that region. We draw 10 000
points from the final posterior distribution for our final sam-
ple. For each parameter, we adopt the median as the best
estimate and use the 15.9 and 84.1 percentiles for the uncer-
tainties.

From these, we are then able to estimate the anisotropy

β = 1−
σ2
θ + σ2

φ

2σ2
r

(9)

of the system. For each of the 10 000 points in our final sam-
ple, we calculate the anisotropy β. The distribution of these
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anisotropy values is shown in Figure 2, and has a median and
15.9- and 84.1-percentile uncertainties of β = 0.46+0.15

−0.19. We
discuss this value in the context of previous work in section 4.

Table 1 summarises our fits to the velocity ellipsoid of the
halo. We provide estimates of the mean velocities and veloc-
ity dispersions for each velocity component and the inferred
anisotropy. The Gaia sample is Sample A in the table. The
other samples are described later in the text. We see that
the Gaia sample has a mean radial velocity consistent with 0
within its uncertainty, but shows hints of net tangential mo-
tion, which we will address later.

3.2. Density

To estimate the power-law index γ of the halo cluster num-
ber density profile, we start with Galactocentric distances
from the Harris (1996, 2010 edition) catalogue of 157 Galac-
tic globular clusters. This catalogue contains both clusters
that move on bulge-like and disk-like orbits and are found
in the inner regions of the galaxy, and clusters that move on
halo-like orbits and are found further out. All the clusters
in our PM sample were deliberately chosen to be part of the
halo cluster population, so that is the number density profile
of interest for this analysis. We use a least-squares fitting al-
gorithm to fit (with uncertainties) a broken power law to the
data that has an index γin in the inner regions and an index
γout in the outer regions, with a break radius of rbreak. We
assume that γin describes the density profile of the bulge and
disk clusters and that γout describes the density profile of the
halo clusters.

Figure 3 shows the cumulative number density profile of all
Milky Way globular clusters in blue. The solid black line is
the best-fitting broken power law to the data, and the dashed
black line marks the break radius at which the power-law in-
dex changes. The parameters of the fit are shown in the top-
left corner, with uncertainties that are purely statistical and
do not encompass systematic effects. As we assume that the
outer profile describes the halo clusters, we adopt this value
γ = 3.53 ± 0.01 for our mass analysis.8 This is the same
value we adopted in a recent study of halo GCs with HST
PMs by Sohn et al. (2018) and agrees well with previous
studies (eg. Harris 2001).

3.3. Potential

To estimate the power-law index α of the gravitational
potential, we assume that the Milky Way is composed of
a nucleus, bulge, disk, and halo. We adopt the nucleus,
disk, and bulge prescriptions from Price-Whelan (2017), that

8 The fitted double power-law provides a better fit to the cumulative num-
ber profile inside ∼20 kpc than outside, as there are far fewer clusters at
large radii to constrain the outer fits. Mass estimates correlate mildly with γ
such that a change in γ of 0.2 will change the mass estimate inside 21.1 kpc
by ∼5%, but we do not include this in our calculations.

100 101 102

r [kpc]

50

100

150

N
(<

r)

rbreak = 3.66±0.06 kpc
γinner = 2.09±0.03
γouter = 3.53±0.01

Figure 3. A power-law fit to the cumulative number profile of Milky
Way globular clusters. To this we fit a broken power-law model that
has an index γin in the inner regions, which we assume to be domi-
nated by disk clusters, and an index γout in the outer regions, which
we assume to be dominated by halo clusters, and is the value of in-
terest for our analysis. The cumulative histogram in blue shows the
data, the solid black line shows the best-fitting broken power law,
and the dashed black line marks the break radius. The parameters
for the best-fitting broken power law are shown in the top-left cor-
ner of the figure. The index for the outer power law is the value of
interest and is highlighted in blue. The uncertainty on this value is
the uncertainty in the fit, and does not account for uncertainty in the
estimated positions of the Milky Way clusters or the functional form
of the fit. For guidance, we also mark as blue dotted lines the radius
of the innermost cluster in the Gaia sample at 2.0 kpc, the outermost
clusters in the Gaia sample at 21.1 kpc, and the outermost cluster
in the HST sample at 39.5 kpc.

is, we assume a Hernquist nucleus with mass Mnucleus =

1.71× 109 M�and scale length lnucleus = 0.07 kpc, a Hern-
quist bulge with mass Mbulge = 5 × 109 M�and scale
length lbulge = 1 kpc, and a Miyamoto-Nagai disk Mdisk =

6.8 × 1010 M�, scale length ldisk = 3 kpc and scale height
hdisk = 0.28 kpc.

The shape and mass of the halo is uncertain – indeed, this
uncertainty is the primary motivation for the current analysis
– and so we choose to sample a range of possible halos to see
what α values they imply. To do this, we assume that the halo
is spherical and Navarro et al. (1996, NFW) in form, but with
unknown virial radius rvirial and a concentration c, which we
will sample.9

The oft-cited study by Klypin et al. (2002) favours an NFW
halo with virial mass Mvirial = 1 × 1012 M� and scale
radius rscale = 21.5 kpc (virial radius rvirial = 258 kpc

9 Our goal here is to approximate the slope of the potential over the re-
gion of interest. The precise functional form of the potential is unknown.
We are assuming here that picking a single functional form and varying its
parameters will give a similar distribution of α values as sampling a variety
of functional forms. Especially as we insist that that circular velocity at the
solar radius must be consistent with observations.
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Table 1. Galactocentric mean velocities, dispersions, and anisotropies for the GC subsamples.

Sample vr vθ vφ σr σθ σφ β

(km s−1) (km s−1) (km s−1) (km s−1) (km s−1) (km s−1)

Aa −15.9+23.4
−24.0 22.1+15.6

−14.9 −29.8+18.6
−19.0 138.9+20.1

−15.8 91.3+13.0
−10.7 109.5+15.9

−12.4 0.46+0.15
−0.19

Bb −26.7+23.2
−23.5 20.8+14.8

−14.5 −18.8+16.0
−16.3 153.3+18.0

−14.9 100.7+12.0
−10.3 110.4+13.8

−11.0 0.52+0.11
−0.14

Cc −21.5+26.9
−26.2 22.2+21.0

−21.0 −41.0+24.0
−24.2 132.9+22.6

−16.7 103.7+17.2
−13.4 124.0+21.2

−15.5 0.24+0.23
−0.31

Dd −27.1+23.9
−25.0 7.9+12.1

−11.7 −27.5+11.9
−12.5 159.1+19.8

−16.4 76.4+9.8
−8.3 78.4+10.0

−8.4 0.76+0.06
−0.08

aGaia GCs.
bGaia and HST GCs.
cGaia GCs with possible merger group removed.
dGaia and HST GCs with high vtan clusters removed.

and a concentration c = 12). More recent halo estimates
have been less massive: Bovy (2015) favours an NFW halo
with virial mass Mvirial = 0.8 × 1012 M� and scale ra-
dius rscale = 16.0 kpc (virial radius rvirial = 245 kpc and
a concentration c = 15.3), and Price-Whelan (2017) favours
an NFW halo with virial mass Mvirial = 0.54 × 1012 M�
and scale radius rscale = 15.62 kpc (virial radius rvirial =

214 kpc and a concentration c = 13.7). However, other
studies have found somewhat larger total masses for the
Milky Way (e.g. Watkins et al. 2010) or concentrations (e.g.
Deason et al. 2012) than these halo parameters would im-
ply. As such, we choose to sample a range of virial radii
200 ≤ rvirial ≤ 400 kpc, sampled at 1 kpc intervals, and a
range of concentrations 8 ≤ c ≤ 20, sampled at 0.1 intervals.

To further narrow down the list of allowed halos, we insist
that the circular velocity at the solar radius must be consis-
tent with observed values. Estimates for the circular velocity
typically span 220− 250 km s−1; for each halo, we estimate
the circular velocity for the best-fitting power-law model at
R� and reject halos with velocities outside of this range.

For each halo model, we calculate the total potential profile
from the nucleus, bulge, disk, halo components, and used a
least-squares fitting algorithm to fit a power-law across the
range spanned by our cluster sample 2.0 ≤ r ≤ 21.1 kpc.
The index of the power-law fit α is the quantity we require for
our models. Figure 4 shows the range of potentials sampled
and the range of the power law fits to those halos.

Figure 5 shows the variation in α (upper panel) and vcirc
(lower panel) across our halo sample, as indicated by the re-
spective colour bars. The white regions are halos with cir-
cular velocities inconsistent with observations. The corre-
sponding distribution of α values is shown in Figure 6.

3.4. Monte Carlo Simulations

The variation in the mass estimates for different halos as-
sesses our uncertainty in the particular density profile of the

10−1 100 101 102

r [kpc]

104

105

Φ
[k

m
2

s−
2 ]

halo

disk

bulge

nucleus

Figure 4. Range of power-law fits to the Milky Way potential. We
assume that the Milky Way consists of a Hernquist nucleus (orange),
a Hernquist bulge (yellow), a Miyamoto-Nagai disk (light green),
and an NFW halo (dark green). Their sum (the total potential) is
shown in grey. We assume that the nucleus, bulge, and disk com-
ponents are fixed. The disk potential shows some slight broadening
around 2 kpc as we have plotted potential as a function of spheri-
cal radius but the disk is not spherical. We sample a range of NFW
halo parameters so, for the halo and total potentials, the solid lines
show the median profiles, the dark shaded regions show the range
between the 25th and 75th percentiles of the profiles, and the light
shaded regions show the range of profiles for all halos sampled. The
dotted lines show the region 2.0 ≤ r ≤ 21.1 kpc spanned by our
halo cluster sample. The solid black lines show the extent of the
best-fitting power laws in this region, and the dashed lines show the
extent of the best-fitting power laws extended outside of the region
of interest.

halo, but does not assess how well the mass estimators them-
selves are able to recover the true mass of the MW using
34 tracers drawn from the underlying distribution. We do
this using the set of Monte Carlo simulations described in
Watkins et al. (2010). Briefly, the simulations create a set
of tracer objects drawn from a power-law density with in-
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Figure 5. The variation in potential slope (upper panel) and circular
velocity at the solar radius (lower panel) for a grid of halo models
assumed to be NFW in shape and defined by a concentration c and
a virial radius rvir. We only show halos with circular velocities at
the solar radius R� = 8.29 kpc of 220 ≤ vcirc ≤ 250 km s−1 to
force consistency with observations. The white regions are halos
with circular velocities outside of this range.
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Figure 6. Distribution of α values fitted to the grid of sample halos;
halos for which the circular velocity at the solar radius is inconsis-
tent with observations have been removed.
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Figure 7. Performance of the TME using 34 tracers. We ran 1000
Monte Carlo simulations (see text for details). Here we show a his-
togram of the ratio MTME/Mtrue of the estimated mass to the true
mass for the simulations, with the median value marked with a solid
line and the 15.9 and 84.1 percentiles shown as dashed lines. These
values are all given in the upper-right corner. We see that on aver-
age the estimator does indeed recover the true mass. We incorporate
the scatter in the recovered values into the uncertainties for our final
mass estimate.

dex γ, with velocities consistent with a power-law potential
with index α and with anisotropy β. We then use the TME
to estimate the mass MTME within rmax, and compare this
estimated mass with the known true mass of the simulation
Mtrue within rmax.

For these simulations, we use density slope γ = 3.53 (as
calculated in subsection 3.2), and anisotropy β = 0.46 (the
median value found in subsection 3.1). For the potential
slope α, we select a ‘typical’ halo using the halo grid de-
scribed in subsection 3.3: we choose to use rvirial = 300 kpc
(the middle value of the range sampled), and then use the grid
to find the value of concentration c for which the circular ve-
locity at the solar radius is closest to the observed value of
V�, which results in c = 16.8. We use the value of α = 0.26

calculated for this halo. We further use the observed solar ra-
dius and the circular velocity at the solar radius for the fidu-
cial radius and fiducial velocity in the potential power-law.
Although our analysis does use a range of values for both α
and β, using fixed values for our simulations is sufficient for
our purposes here, which is to assess how far our mass esti-
mate based on a single cluster sample may be from the true
value, as we do not expect the performance of the TME with
34 tracers to change with α or β.

We generate 1000 simulations of 34 clusters, from which
we find that the ratio of the estimated mass to the true mass
f = MTME/Mtrue = 1.01+0.17

−0.16, suggesting that the estima-
tors are able to recover the true mass on average, assuming
our models are a good description of nature. The full distri-
bution of f values is shown in Figure 7 with the median and
15.9 and 84.1 percentiles marked as solid and dashed lines.
We will later use the results of these simulations to ensure



INTERMEDIATE-MASS MILKY WAY FROM GAIA DR2 9

that the scatter in the recovery of the true mass from a single
sample is accurately accounted for in our uncertainties.

3.5. Tracer Mass Estimates

Now that we have estimated the anisotropy β, density
power-law index γ, and potential power-law indices α, we
can combine this information with the cluster position and
velocity data, and finally estimate the mass of the Milky Way
within rmax = 21.1 kpc using Equation 1. From this mass,
we can also estimate the circular velocity of the MW at rmax

as

vcirc (rmax) =

√
GM (< rmax)

rmax
. (10)

We begin with the set of halos generated in subsection 3.3
with circular velocities at the solar radius consistent with ob-
servations. We previously estimated α values for every halo.
Additionally, we draw an anisotropy β at random from the
posterior distribution of anisotropy values calculated in sub-
section 3.1 for each halo. The value of γ is fixed from sub-
section 3.2 and is the same for every halo. Finally, we draw
positions and velocities from the distributions for each clus-
ter and use Equation 1 to estimate the mass MTME for each
halo in the grid.

We know from the Monte Carlo simulations in subsec-
tion 3.4, that there is some scatter in the performance of the
estimator for a single sample of 34 clusters and that the true
mass is related to the estimated mass via Mtrue = MTME/f .
For each sample halo, we draw a value of f at random from
the posterior distribution calculated in subsection 3.4 and use
that to infer the true mass from the TME mass. We adopt the
median of the resulting distribution as the best mass estimate,
and use the 15.9 and 84.1 percentiles to estimate uncertain-
ties. Thus, we estimate the mass of the MW within 21.1 kpc
to be

M(< 21.1 kpc) = 0.21+0.04
−0.03 × 1012M� (11)

and the circular velocity of the MW at this distance to be

vcirc(21.1 kpc) = 206+19
−16km s−1. (12)

Note that the scatter in the performance of the estimator for
a single sample and our uncertainties on both α, β, and the
cluster properties have been naturally folded into our results
using this method.

The TME only allows us to estimate the mass inside the ra-
dius of the outermost cluster in our sample. However, we can
use our halo grid to predict what the virial mass10 of the MW
might be, given the value of M (< rmax) we have estimated.

10 We calculate the virial mass at each grid point directly given the NFW
parameters of the point. The virial mass is defined as the mass inside the
virial radius, and the virial radius is defined as the radius at which the mean
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Figure 8. The probability Phalo of a set of NFW models defined by
concentration c and virial radius rvir, based on the Mgrid (< rmax)
predicted for the model and the actual M (< rmax) measured from
the data. White regions are halos previously rejected as they have
circular velocities inconsistent with observed values. The ver-
tical lines mark, from left to right, halos with virial masses of
(0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5)× 1012 M�.

For each of the sample halos in the grid, we can estimate
the mass Mgrid (< rmax) of the MW inside rmax for the halo
model. We then define the probability density Phalo of the
model value, given the distribution of M (< rmax) we esti-
mate from the data. The variation of Phalo over the halo grid
is shown in Figure 8. Halos on the left side of the swath in
the diagram are most consistent with the observations. For
each halo in the grid, we can also estimate the mass inside
the virial radius Mgrid,virial. Now we ask what are the virial
masses of the halos for which Mgrid (< rmax) agrees with
our measured value M (< rmax)? That is, we look at the
distribution of virial masses over the grid, weighted by the
Phalo values that assesses the consistency of that grid point
with our measured value. From this, we can calculate the ex-
pected value and 15.9 and 84.1 percentiles of the virial mass
implied by our tracer mass estimates, taking these probabili-
ties into account. Thus, we find the virial mass of the Milky
Way to be

Mvirial = 1.28+0.97
−0.48 × 1012M�. (13)

Again, the scatter inherent in the estimator and the uncertain-
ties on the α and β have been propagated into this result. Our
estimate for Mvirial has a larger fractional uncertainty than

overdensity of the halo relative to the critical density is ∆vir. We adopt
the prescription for ∆vir from Bryan & Norman (1998). Note that we do
not estimate the virial mass from the power-law fits, as the power laws are
assumed to hold over the range of the GC data, not out into the outskirts of
the halo.
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M (< rmax) owing to the uncertainty in the extrapolation of
the dark halo mass profile to large radii.

Figure 9 summarises our results. The left panel shows the
distribution of mass estimates M(< 21.1 kpc); the middle
panel shows the distribution of vcirc(21.1 kpc) estimates;
and the right panel shows the resulting distribution of pre-
dicted virial masses Mvirial.

3.6. Expanded GC Sample

Our analysis so far has been limited to 21.1 kpc, and only
probes the very inner parts of the halo. Furthermore, the un-
certainties on our virial mass are large due to extrapolation
of our results out to significantly larger radii. More clusters
further out in the halo would thus be extremely beneficial.
Increased sample size would also help to decrease uncertain-
ties in all estimates, assuming our model assumptions are rea-
sonable, or highlight problems if our model assumptions are
incorrect.

As described, in subsection 2.2, we augment our sample
with 12 extra clusters with HST PMs from Sohn et al. (2018).
We repeat the analysis as laid out above. The density slope γ
remains the same, but all other parts of the analysis necessar-
ily change with the new sample. We find an anisotropy,

β = 0.52+0.11
−0.14. (14)

The Monte Carlo simulations are run with the same α and γ
as before, but with the revised β and with an increased radial
range and give f = 1.00+0.14

−0.13. For the new rmax = 39.5 kpc,
we then estimate

M(< 39.5 kpc) = 0.42+0.07
−0.06 × 1012 M�, (15)

which corresponds to a circular velocity at rmax of

vcirc(39.5 kpc) = 214+17
−15km s−1. (16)

We again extrapolate out to estimate the virial mass and find

Mvirial = 1.54+0.75
−0.44 × 1012 M�. (17)

We summarise our results in Table 2. Sample A is the
set of Gaia measurements and Sample B is the set of com-
bined Gaia and HST measurements. Samples C and D are
discussed in section 4.

4. DISCUSSION

4.1. Anisotropy

Using only the Gaia halo GCs we estimated anisotropy
β = 0.46+0.15

−0.19 over 2.0 ≤ r ≤ 21.1 kpc, and using the
expanded sample we found β = 0.52+0.11

−0.14 over 2.0 ≤ r ≤
39.5 kpc. Both values indicate that the halo over the range of
the GC sample is radially anisotropic. Sohn et al. (2018) re-
ported β = 0.609+0.130

−0.229 over the range 10.6 < r < 39.5 kpc.

All of these values are consistent within their uncertainties,
but the trends suggest that the halo becomes more radially
anisotropic in its outer regions, in line with predictions from
cosmological simulations (e.g. Diemand et al. 2007).

There are a number of other estimates for the anisotropy
of the halo over radial ranges that overlap that of our sam-
ple. Our radial β is inconsistent with the estimates for in-
dividual halo star samples of Sirko et al. (2004) and Cun-
ningham et al. (2016), both of which favour an isotopic or
even tangentially-anisotropic halo (although the uncertain-
ties in the latter were large enough that that results cannot
be called truly discrepant), but in good agreement with the
radial estimates from Bond et al. (2010) and Deason et al.
(2012).

4.2. Masses

As we discussed in section 1, MW mass estimates can vary
markedly based on the types of data used, the techniques
used, and the assumptions that go into the mass estimate,
with estimates for the total mass of the MW varying between
∼ 0.5 − 3 × 1012M�. Furthermore, only the timing argu-
ment and abundance-matching studies actually estimate the
total mass of the MW, most other estimates can only mea-
sure the mass within the extents of the dataset being used, as
we have done here, so most estimates are given at different
radii, which makes them hard to compare.

Indeed, our mass estimates at 21.1 kpc and 39.5 kpc cannot
easily be compared directly. We do note that the latter mass
is about twice as large for about twice the size of the en-
closed radius, consistent with naive expectations for a nearly
isothermal sphere. Our values are instead most usefully com-
pared to other estimates near these radii.

Kafle et al. (2012) estimated M(< 25 kpc) ≈ 0.21 ×
1012 M�, unfortunately without uncertainties, by analysing
blue horizontal branch stars in the halo, and Küpper et al.
(2015) estimated M(< 19 kpc) = 0.21 ± 0.04 × 1012 M�
by analysing the orbit of the Palomar 5 tidal stream, both in
good agreement with our estimate of M(< 21.1 kpc) =

0.21+0.04
−0.03 × 1012M�. Since completing this work, there

have been further mass estimates from Gaia measurements:
Posti & Helmi (2019) applied a Bayesian estimator to the
Gaia sample as we used here to estimate M(< 20 kpc) =

0.191+0.017
−0.015×1012 M�; and Eadie & Jurić (2018) applied an

alternative Bayesian estimator to the expanded sample from
Vasiliev (2019) to estimate M(< 25 kpc) = 0.26+0.03

−0.02 ×
1012 M�, also in good agreement with our results.

Sohn et al. (2018) estimated M(< 39.5 kpc) =

0.60+0.17
−0.11 × 1012 M� using the same a set of HST clus-

ters we used to augment our sample, slightly higher but still
consistent with our estimate here of M(< 39.5 kpc) =

0.42+0.07
−0.06 × 1012M�.
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Figure 9. Summary of results using the Gaia GC sample for which rmax = 21.1 kpc. Left: Distribution of tracer mass estimates M (< rmax).
Middle: Distribution of estimates of the circular velocity vcirc (rmax) made using the mass estimates in the left panel. Right: Virial mass
Mvirial estimates inferred from the grid of halos sampled, weighted by the match to distribution of masses in the left panel. In each case, we
adopt the median of the distribution and the 15.9 and 84.1 percentiles as the estimate and its uncertainties; these are given in the top-right corner
of each panel.

Table 2. Summary of mass results for the halo GC subsamples.

Sample N rmin rmax M (< rmax) vcirc (rmax) Mvirial

(kpc) (kpc) 1012 M� (km s−1) 1012 M�

Aa 34 2.0 21.1 0.21+0.04
−0.03 206+19

−16 1.28+0.97
−0.48

Bb 46 2.0 39.5 0.42+0.07
−0.06 214+17

−15 1.54+0.75
−0.44

Cc 26 2.0 21.1 0.21+0.04
−0.03 209+21

−17 1.34+1.02
−0.50

Dd 41 4.1 39.5 0.36+0.07
−0.06 199+19

−16 1.22+0.63
−0.36

aGaia GCs.
bGaia and HST GCs.
cGaia GCs with possible merger group removed.
dGaia and HST GCs with high vtan clusters removed.

There are a number of previous estimates of the mass
within 50 kpc including 0.54+0.02

−0.36 × 1012 M� (Wilkinson &
Evans 1999), 0.55+0.00

−0.02 × 1012 M� (Sakamoto et al. 2003),
and 0.42 ± 0.04 × 1012 M� (Deason et al. 2012). Remem-
bering that these estimates were made ∼10 kpc further out
than our sample, the two former estimates are in extremely
good agreement with our estimate given expectations for a
nearly isothermal sphere, and the latter is slightly lower, but
still consistent with our estimate.

More recently, Vasiliev (2019) estimated M(< 50 kpc) =

0.6+0.14
−0.09 × 1012 M� and Eadie & Jurić (2018) estimated

M(< 50 kpc) = 0.37+0.04
−0.03 × 1012 M�, both using an ex-

panded sample of PMs measured with Gaia from the former
work. Our estimate is consistent with the Vasiliev (2019)
result and marginally inconsistent with the Eadie & Jurić
(2018) result; our estimate further in at ∼21 kpc was con-
sistent with the Eadie & Jurić (2018) estimate at 25 kpc,
suggesting that their method predicts a steeper mass density
slope than favoured by our models.

We also note that Gibbons et al. (2014) estimated a mass
0.41±0.04×1012 M� inside 100 kpc by fitting to the Sagit-
tarius tidal stream, clearly at odds with our results. These
authors only fitted the locations of the apocentres and peri-
centres of the trailing and leading arms of the Sagittarius,
and not the intervening locations. The dataset is now much
richer, with Gaia DR2 likely to add to our knowledge of the
proper motions along the stream. It would be interesting to
re-visit the work of Gibbons et al. (2014) in the light of this.

Now let us consider our virial mass estimates. Using only
the Gaia GCs, we find 1.28+0.97

−0.48 × 1012 M�, and using the
expanded sample, we find 1.54+0.75

−0.44 × 1012 M�. Both of
these values are in good agreement, but note that the error
bars on the latter are smaller than the error bars on the former.
The increased sample size may have a small effect here, but
the main contribution to this decrease comes from the fact
that there is less extrapolation involved in estimating a virial
mass from data at∼40 kpc than there is from data at∼20 kpc.
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This means that there is less variation in the allowed halos
and in turn allows us to constrain the virial mass much better.

Sohn et al. (2018) estimated a virial mass of 1.87+0.67
−0.47 ×

1012 M�, slightly higher than but in good agreement with
both of our values.

Comparison with other studies is again tricky as the defini-
tion of ’virial’ can change from study to study. The recent re-
view by Bland-Hawthorn & Gerhard (2016) put a number of
different estimates at a different radii onto the same scale for
comparison. Our estimates are best compared against their
M100 values, that is the mass within the radius for which the
mean overdensity is 100, which is very close to the mean
overdensity value we use in this work. Our estimates are in-
consistent with the most massive and least massive of these,
and agree best with the intermediate values. (See also Figure
1 of Wang et al. (2015) and Figure 1 of Eadie et al. (2017)
for further comparisons.)

More recently, Vasiliev (2019) estimated a virial mass
0.8+0.5

−0.2 × 1012 M�using a large sample of GCs with Gaia
PMs. This is considerably smaller than our value, and the
virial radius they estimate (∼ 160± 20 kpc) is much smaller
than those our method favours, implying that the outer halo
density is steeper than the NFW value of −3. Many of the
additional clusters in the Vasiliev (2019) dataset are further
out in the halo than the sample we used, which in principle
should give stronger constraints on the mass at larger dis-
tances. However, these outer clusters are more likely to have
been recently accreted and may not be fully phase-mixed,
which could invalidate any mass estimates. To fully explore
these differences and their implications is beyond the scope
of this paper.

4.3. Halo Density Profile

We can also consider the implications of our results for the
density profile of the halo. Figure 8 shows the agreement
between the mass enclosed at rmax for the model and from
the data for the set of allowed halos with consistent circu-
lar velocities at the solar radius. On this, we mark the virial
radii for which the halo virial masses are, from left to right,
0.5−3.5×1012 M�at 0.5×1012 M�intervals for reference.
It is clear that the data can be explained by either low con-
centration, high virial radius (and thus high virial mass) ha-
los – similar to those favoured by cosmological simulations
(Klypin et al. 2011)11 – or by high concentration, low virial
radius/mass halos. The latter seem to be favoured over the
former, as there are more such halos that can adequately fit
the data, but we cannot rule out either.

To derive our results, we have made a number of assump-
tions, one of which is that the halo and the GC distributions

11 Note though that these simulations do not fully consider the effect of
baryons in shaping the halo.

are spherical, neither of which is necessarily true. Indeed,
there are some hints of non-sphericity in that σθ < σφ (see
Table 1). To lowest order, the predictions of a spherical
model, when applied to non-spherical distributions, can be
interpreted as an estimate of the spherically averaged quan-
tities of the actual distribution. In reality, some bias may
be introduced. The exact size of this needs to be quantified
through analysis of either, e.g., triaxial equilibrium models,
or cosmological simulations with non-spherical distributions,
both of which are outside the scope of the present paper.

4.4. Substructure

One of the assumptions in our work is that the halo GCs
comprise a statistically independent, well-mixed tracer pop-
ulation in the MW’s gravitational potential. It is for this
reason that we excluded all-but-one of the GCs associated
with the Sagittarius dSph. However, there have been recent
claims that up to two thirds of the local stellar halo may
have been deposited by the single encounter of a massive
dwarf galaxy (e.g., Deason et al. 2013; Belokurov et al. 2018;
Myeong et al. 2018a). The evidence for this rests mainly on
the highly radially anisotropic, non-Gaussian distribution of
velocities of metal-rich halo stars in both the SDSS-Gaia and
Gaia DR2 catalogues. If true, then such a massive satellite
will also have been accompanied by its own retinue of GCs.
Very recently, Myeong et al. (2018b) have tentatively used
Gaia DR2 to identify 8 halo GCs associated with this merger
event (NGCs 1851, 1904, 2298, 2808, 5286, 6779, 6864, and
7089).

It is prudent to check the robustness of our results to these
claims. Re-running the calculations for our DR2-only sample
with these 8 GCs removed, we obtain

M(< 21.1 kpc) = 0.21+0.04
−0.03 × 1012M�, (18)

very close to our earlier result in eq. (11). We note that while
the mass enclosed hardly changes, the inferred anisotropy
does

β = 0.24+0.23
−0.31. (19)

This change is understandable, as the most eccentric GCs
have been excised from the sample. Indeed, Myeong et al.
(2018b) identified their 8 GCs from clustering in radial ac-
tion, and so the removed GCs do make a prominent contribu-
tion to the anisotropy parameter. These results are added to
Table 1 and Table 2 as Sample C.

Alternatively, recently accreted GCs or young halo GCs
that have not yet phase-mixed with the rest of the GC pop-
ulation could be on highly tangential orbits. As we noted in
subsection 3.1, we see that the Gaia (and HST) GCs show net
tangential motion; this is also apparent in Figure 1 where the
high vtan GCs have been coloured in orange and cyan. To as-
sess the dependence of our results on these outliers, we reran
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the analysis of the combined Gaia+HST sample with these
clusters removed. We now obtain an anisotropy estimate of

β = 0.76+0.06
−0.08. (20)

The value of β is now obviously more radially anisotropic
than before as we have removed high vtan clusters. The en-
closed mass within rmax is becomes

M(< 39.5 kpc) = 0.36+0.07
−0.06 × 1012M�, (21)

and the inferred virial mass is

Mvirial = 1.18+0.51
−0.34 × 1012M�. (22)

These results are added to Table 1 and Table 2 as Sample D.
The inferred masses are somewhat decreased, but still, within
the uncertainty ranges of the previously quoted values. These
tests with modified samples add confidence that our inferred
MW mass estimates are pleasingly robust to potential sub-
structure in the halo GC distribution.

5. CONCLUSIONS

We have used Galactocentric motions for a set of 34 halo
GCs estimated using PM data from the second Gaia data re-
lease, to estimate the anisotropy of the halo GC population
and then to estimate the mass of the MW inside 21.1 kpc,
the position of the most distant cluster in our sample. Com-
bined with a catalogue of clusters from a recent HST study,
we were able to estimate the anisotropy and mass of the MW
inside 39.5 kpc.

Using only the Gaia sample, we find an anisotropy β =

0.46+0.15
−0.19 in the range of the clusters 2.0 ≤ r ≤ 21.1 kpc.

With the addition of the HST clusters, we find β = 0.52+0.11
−0.14

over 2.0 ≤ r ≤ 39.5 kpc. This suggests that the halo is ra-
dially anisotropic, consistent with a number of previous esti-
mates and predictions from cosmological simulations and in
good agreement with a number of similar studies, including
the study of 16 halo GCs with HST by Sohn et al. (2018).

We estimate the masses M(< 21.1 kpc) = 0.21+0.04
−0.03 ×

1012M� andM(< 39.5 kpc) = 0.42+0.07
−0.06×1012M�. These

masses correspond to circular velocities of vcirc(21.1 kpc) =

206+19
−16km s−1 and vcirc(39.5 kpc) = 214+17

−15km s−1 re-
spectively, which, compared with estimates for the circular
velocity at the solar radius and to each other, is consistent
with a rotation curve that is not falling rapidly over the radial
range of our data.

From these, we are also able to place constraints on the
virial mass of the MW. We favour the results for the com-
bined sample here, as it is more reasonable to perform this
extrapolation for a larger sample size with a broader ra-
dial range and, more importantly, greater reach. We find
Mvirial = 1.54+0.75

−0.44 × 1012M�, again of intermediate size
compared with previous estimates. All of our mass estimates

are intermediate in value when compared to the range of val-
ues found in the literature, with both low-mass (< 1012 M�)
and very high mass (& 2.5× 1012 M�) MWs generally dis-
favoured.

Previous mass estimates have often been limited by either
the mass-anisotropy degeneracy for LOS velocity samples,
or the small samples sizes for distant objects with 3D mo-
tions. Given the new results from Gaia and HST, these are
now both resolved. Various kinds of systematics may now
become the dominant source of uncertainty. Nevertheless,
further progress will come from having yet larger sample
sizes. Gaia Collaboration et al. (2018b) measured PMs for
only 75 GCs out of the 157 known in the MW (Harris 1996,
2010 edition) by making extremely conservative cuts on the
number of member stars identified. It is likely that PMs and,
hence, Galactocentric motions can be measured for many
more Galactic GCs, both using DR2 and future data releases.
Such measurements will further refine our understanding of
the MW mass.
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Facility: Gaia, HST Software: astropy (Astropy Collaboration et al. 2013,
2018), EMCEE (Foreman-Mackey et al. 2013)
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Table 3. Galactocentric positions and velocities in spherical and Cartesian coordinates for the full Gaia GC sample.

Name r θ φ vr vθ vφ Crθ Crφ Cθφ

(kpc) (deg) (deg) (km s−1) (km s−1) (km s−1)

NGC 0104 7.6 ± 0.1 -24.7 ± 0.7 202.0 ± 0.8 -12.0 ± 2.8 44.8 ± 1.5 -187.9 ± 5.2 -0.006 0.004 -0.001
NGC 0288 12.2 ± 0.2 -46.8 ± 0.8 179.7 ± 0.0 -31.9 ± 1.1 41.0 ± 1.0 46.0 ± 8.6 -0.001 0.001 -0.001
NGC 0362 9.5 ± 0.1 -40.6 ± 0.7 224.5 ± 1.4 143.9 ± 4.4 30.2 ± 7.3 4.3 ± 4.8 0.007 0.008 -0.044
NGC 1851 16.9 ± 0.3 -24.3 ± 0.3 215.5 ± 0.5 131.5 ± 3.1 -30.3 ± 3.3 7.0 ± 4.7 -0.001 0.013 -0.039
NGC 1904 19.0 ± 0.3 -19.4 ± 0.2 207.4 ± 0.4 43.9 ± 2.7 20.4 ± 2.6 -8.3 ± 5.9 0.000 -0.023 -0.068

x y z vx vy vz Cxy Cxz Cyz v

(kpc) (kpc) (kpc) (km s−1) (km s−1) (km s−1) (km s−1)

-6.4 ± 0.2 -2.6 ± 0.1 -3.2 ± 0.1 -77.6 ± 2.3 171.3 ± 5.9 45.7 ± 0.9 -0.000 0.000 -0.000 193.6 ± 5.0
-8.4 ± 0.2 0.0 ± 0.0 -8.9 ± 0.2 -8.3 ± 1.3 -46.0 ± 8.6 51.3 ± 0.7 0.007 -0.000 -0.000 69.7 ± 5.7
-5.2 ± 0.2 -5.1 ± 0.1 -6.2 ± 0.1 -89.0 ± 4.2 -93.5 ± 7.1 -70.8 ± 2.0 0.002 -0.001 -0.001 147.3 ± 5.7
-12.5 ± 0.2 -8.9 ± 0.2 -6.9 ± 0.2 -83.4 ± 1.3 -68.1 ± 5.8 -81.6 ± 2.3 -0.000 0.000 -0.001 135.2 ± 3.0
-15.9 ± 0.2 -8.3 ± 0.2 -6.3 ± 0.1 -46.6 ± 2.0 -14.8 ± 6.3 4.6 ± 2.4 -0.008 -0.016 0.107 49.6 ± 2.1

NOTE—This table is published in its entirety in the machine-readable format. A portion is shown here for guidance regarding its form and
content.

APPENDIX

A. GALACTOCENTRIC POSITIONS AND MOTIONS

In section 2, we calculated Galactocentric positions and velocities for all 75 GCs in Gaia Collaboration et al. (2018b). We
provide these positions and motions in both spherical and Cartesian coordinates in Table 3 along with their uncertainties and
the correlations between velocity components. Note that the astrometric measurements and heliocentric Cartesian positions and
velocities are provided in Gaia Collaboration et al. (2018b).17

We intend that this table will eventually be available online through the journal, however in the meantime, an electronic version
is available at: http://www.stsci.edu/∼lwatkins/data/data gaia galactocentric.dat

17 Available electronically at https://www.astro.rug.nl/∼ahelmi/research/dr2-dggc/

http://www.stsci.edu/~lwatkins/data/data_gaia_galactocentric.dat
https://www.astro.rug.nl/~ahelmi/research/dr2-dggc/

