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Abstract

We present Hubble Space Telescope (HST) and Chandra imaging, combined with Very Large Telescope MUSE
integral field spectroscopy of the counterpart and host galaxy of the first binary neutron star merger detected via
gravitational-wave emission by LIGO and Virgo, GW170817. The host galaxy, NGC 4993, is an S0 galaxy at
z=0.009783. There is evidence for large, face-on spiral shells in continuum imaging, and edge-on spiral features
visible in nebular emission lines. This suggests that NGC 4993 has undergone a relatively recent ( 11 Gyr) “dry”
merger. This merger may provide the fuel for a weak active nucleus seen in Chandra imaging. At the location of
the counterpart, HST imaging implies there is no globular or young stellar cluster, with a limit of a few thousand
solar masses for any young system. The population in the vicinity is predominantly old with 1% of any light
arising from a population with ages 500 Myr< . Both the host galaxy properties and those of the transient location
are consistent with the distributions seen for short-duration gamma-ray bursts, although the source position lies
well within the effective radius (r 3e ~ kpc), providing an re-normalized offset that is closer than 90%~ of short
GRBs. For the long delay time implied by the stellar population, this suggests that the kick velocity was
significantly less than the galaxy escape velocity. We do not see any narrow host galaxy interstellar medium
features within the counterpart spectrum, implying low extinction, and that the binary may lie in front of the bulk of
the host galaxy.

Key words: galaxies: individual (NGC 4993) – galaxies: kinematics and dynamics – stars: neutron

1. Introduction

The existence of binary neutron stars that will eventually
merge via the loss of angular momentum and energy through
gravitational-wave (GW) emission has been recognized since
the identification of the Hulse–Taylor pulsar (Hulse & Taylor
1975). These mergers have long been thought to manifest
themselves as short-duration gamma-ray bursts (SGRBs;
Eichler et al. 1989) and may produce additional optical/IR
emission due to the synthesis of radioactive elements in their
ejecta (e.g., Li & Paczyński 1998; Metzger & Berger 2012;

Barnes & Kasen 2013). However, direct observations of
confirmed neutron star mergers are challenging because
smoking guns to their nature have been difficult to come by,
and only in few cases have both signatures been reported (e.g.,
Berger et al. 2013; Tanvir et al. 2013).
This has changed with the discovery of GW170817, an

unambiguous neutron star merger directly measured in
gravitational waves (LIGO Scientific Collaboration & Virgo
Collaboration 2017b), associated with an SGRB (LIGO
Scientific Collaboration & Virgo Collaboration, Fermi-GBM
& Integral 2017, in preparation) as well as a radioactively
powered kilonova (e.g., LIGO Scientific Collaboration & Virgo
Collaboration 2017, in preparation; Pian et al. 2017; Tanvir
et al. 2017). For the first time this provides a route for studying
the properties of a confirmed neutron star binary merger in
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detail. In this Letter, we consider the environment of the
merger, and the constraints this places on the properties of the
progenitor binary.

2. Observations

GW170817 was detected by the advanced LIGO–Virgo
observatory network on 2017 August 17:12:41:04 UT (LIGO
Scientific Collaboration & Virgo Collaboration 2017b) and has
a chirp consistent with a binary neutron star merger.
Approximately 2 s later the Fermi Gamma-ray Burst Monitor
(GBM) triggered on GRB 170817A (Connaughton et al. 2017;
Goldstein et al. 2017a, 2017b; von Kienlin et al. 2017), as
SGRB (duration ∼2 s) that was also seen by INTEGRAL
(Savchenko et al. 2017). While the sky localizations of both
events were large, they overlapped, and the combined spatial
and temporal coincidence suggested causal association (LIGO
Scientific Collaboration & Virgo Collaboration 2017, in
preparation). Numerous groups undertook searches of the
resulting GW-error region, revealing a counterpart in NGC
4993 (Coulter et al. 2017a, 2017b), independently confirmed
by several groups (Allam et al. 2017; Arcavi et al. 2017;
Lipunov et al. 2017; Tanvir & Levan 2017; Yang et al. 2017).
The counterpart, known as SSS17a/AT2017gfo, was seen to
brighten in the IR and then dramatically redden in the
following nights (Evans et al. 2017; Pian et al. 2017; Smartt
et al. 2017; Tanvir et al. 2017), revealing broad features
consistent with the expectations for a transient driven by heavy
element (r-process) nucleosynthesis, often dubbed a kilonova
(Li & Paczyński 1998; Metzger & Berger 2012; Barnes &
Kasen 2013). These properties cement the association of the
optical counterpart with both the GRB and the gravitational-
wave trigger.

We obtained several epochs of ground- and space-based
observations of the counterpart of GW170817. Observations
with the Very Large Telescope using the MUSE integral field
spectrograph were obtained on 2017 August 18. MUSE has a
field of view of 1′ and covers the spectral range from 4800 to
9300Å. Data were reduced using the ESO pipeline (v2.0.3) via
Reflex and were fit for stellar continua and emission lines
with IFUANAL as described in Lyman et al. (2017). Hubble
Space Telescope (HST) observations were obtained between
2017 August 22 and 2017 August 28 in the F275W, F475W,
F606W, F814W, F110W, and F160W filters via programmes
GO 14804 (Levan), 14771 (Tanvir), and 14850 (Troja). A
description of time variability of the counterpart in these
images is provided in Tanvir et al. (2017). In addition, a single
Advanced Camera for Surveys (ACS)/F606W observation of
NGC 4993 was taken on 2017 April 28, prior to the discovery.
Imaging observations were reduced via astrodrizzle, with
the final scale set to 0 025 (UVIS) and 0 07 (IR). In addition,
we analyze optical images (u, 2400 s; R, 240 s; z, 240 s) of
NGC 4993 obtained at ESO with the Visible wide-field Imager
and Multi-Object Spectrograph (VIMOS), on 2017 August 22,
reduced via the standard esorex pipeline, and archival Spitzer
observations, for which we used the processed, post-basic
calibration (PBCD) data. A log of our observations and their
times is given in Tanvir et al. (2017).

In addition, we also present Chandra observations of the
host galaxy. A total of 47ks were obtained on 2017 September
1 (program 18508587; PI: Troja). For analysis below we use a
cleaned and extracted 0.5–8 keV image. Full details of the
Chandra observations are given in Troja et al. (2017).

3. The Host Galaxy at Large

3.1. Morphology and Dynamics

At first sight, NGC 4993 appears to be a typical S0 galaxy: it
has a strong bulge component and some visible dust lanes close
to the galaxy core in the HST imaging (Figure 1), suggestive of
recent merger activity in an ancient population. It has a
measured redshift from our MUSE data of z=0.009783,
corresponding to a distance of 42.5 Mpc assuming a Hubble
expansion with H 69.60 = km s−1 and neglecting any peculiar
velocity (see Hjorth et al. 2017 for further details of the
distance to NGC 4993). Based on photometry in 1′apertures, it
has an absolute K-band magnitude of M 21.5K ~ - (AB). A
Sérsic fit to R-band and F606W images yields an effective
radius of 16 1 3 kpc~ » , with a Sérsic index of n∼4 that
is indicative of a bulge/spheroid dominated galaxy. A fit to the
global spectral energy distribution of the galaxy (see Table 1)
suggests a stellar mass of M 1.4 1011

* ~ ´ M: based on the
stellar population models of Maraston (2005) and little to no
ongoing star formation. These diagnostics are typically the only
ones available for SGRB hosts, and indeed the properties of
NGC 4993 are broadly in keeping with those of the fraction of
massive early-type galaxies that host SGRBs (Fong et al. 2013,
2016). However, NGC 4993 is much closer than the host
galaxies of all previously known SGRBs, making it possible to
dissect it in greater detail, in particular with regard to its
resolved morphology and the nature of the stellar population(s).

3.2. Stellar Populations

Stellar populations were fit to spaxel21 bins across the host
using STARLIGHT (Cid Fernandes et al. 2005) following the
method detailed in Lyman et al. (2017). These provide spatially
resolved maps22 of stellar velocity, velocity dispersion,
extinction, and ages for NGC4993. Figure 3 shows the results
of our fits. The galaxy is dominated by an older population with

60%> of the mass arising from stars 5 Gyr2 in age in
essentially all of the bins. In general, only 1%–2% of the light
(and thus 1%� of the mass) in the best fits arises from stars
with ages 500 Myr< . The strong Balmer absorption and lack of
evidence for young stellar populations is reminiscent of post-
starburst or post-merger galaxy spectra. This is borne out in our
fits, which indicate a strong contribution from an intermediate
(∼Gyr) stellar population that may be responsible for the
ionized gas we see (see Section 3.3 and Figure 4) via post-AGB
stars.
For galaxies such as this, it is unsurprising that a single

population does not provide a good fit to the resulting data.
However, including large numbers of model population ages in
the fit, which contribute progressively less light, risks over-
interpreting the data or systematics within it and are
increasingly prone to degenerate fits. We use a relatively
sparse number of model ages (13) and find that repeat fitting
with just six ages gave similar results. The contribution of the
young stellar population disappears in a large fraction of the
bins using the reduced model set, indicating that they
contribute no more than 1%–2% of the light.

21 A spaxel is a spectral pixel in an integral field spectrograph, where each
spatial pixel provides spectral coverage.
22 Spaxel bins used a Voronoi binning algorithm to achieve a minimum signal-
to-noise ratio of 25 (Cappellari & Copin 2003) and remain 1″ in radius, even
in the fainter outskirts of the host.
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3.3. Evidence for Past Merger and Emission Line Properties

Chandra X-ray observations reveal a compact source
consistent (±0 5) with the nucleus of the galaxy, with a
luminosity (for a photon index of 2G = ) of L 2 10X

39» ´ erg
s−1 (0.5–8 keV). There is no obvious extended emission
associated with features seen at other wavelengths, although
further point sources in the vicinity may be associated with
NGC 4993. This X-ray emission is most likely due to a weak
active galactic nucleus (AGN), in keeping with a 0.4 mJy radio
detection at 19 GHz (Troja et al. 2017). At large scales the

velocity dispersion within the effective radius within our
MUSE cube is ∼170 km s−1, and this yields a black hole mass
from MBH s- relations (Ferrarese & Merritt 2000; Gültekin
et al. 2009) of M 10BH

8» M:. For this black hole mass the
AGN is only accreting at 10 6~ - of the Eddington luminosity.
Face-on spiral shell-like features can be seen extending to

large radii (∼1′ or 12 kpc) in our HST imaging. Emission line
fits were attempted within the MUSE cube throughout the host
after subtraction of the underlying stellar continuum. Ionized
gas can be seen in spiral arms with a relatively strong
(∼0.8 kpc) bar (see Figures 1 and 4). Notably, these spiral
features seen in nebular emission lines appear with a high ratio
of minor to major axes, suggesting an almost edge-on
alignment. The velocity structure in these edge-on spiral arms
extends to ∼220 km s−1 within the central kiloparsec of the
galaxy, while the stellar components appear to be dominated by
much lower velocities (∼100 km s−1; Figure 3). Furthermore,
the large-scale spiral arms/shells are almost circular (and hence
face-on), while the spiral features seen in emission lines are
near edge-on. The decoupled dynamics of the gas and stars
suggest a relatively recent merger, and that the galaxy has not
yet relaxed. This would also be consistent with the presence of
dust lanes in a quiescent galaxy (e.g., Kaviraj et al. 2012;
Shabala et al. 2012), as seen in our HST optical imaging (see
Figure 1). This recent merger would provide the natural fuel to
power nuclear accretion.
The presence of extended emission lines could imply star

formation in the host galaxy; however, the emission line ratios
are difficult to explain with photoionization from young stars.
We find [N II] 6583l /Hα (and [O III] 5007l /Hβ, where it
could be measured) ratios of ∼1 (Figure 4). Such ratios are

Figure 1. Imaging of the host galaxy of GW170817 with HST. The left panel shows the galaxy observed in the IR with F110W and F160W, where the counterpart is
marked with a circle. The top right panel shows the zoomed-in region observed with WFC3/UVIS, demonstrated the presence of strong dust lanes in the inner regions.
The bottom right panel shows the same image, but with the MUSE contours in the [N II] line superimposed, showing the strong spiral features that only appear in the
emission lines. Some of these features appear to trace the dust lanes.

Table 1
Photometry of NGC 4993

Instrument Band Magnitude (AB)

HST/WFC3 F275W 19.87±0.15
VLT/VIMOS U 14.96±0.01
VLT/VIMOS R 12.13±0.01
VLT/VIMOS z 11.60±0.01
HST/WFC3 F110W 11.27±0.01
HST/WFC3 F160W 10.94±0.01
VLT/HAWK-I K 11.50±0.01
Spitzer/IRAC 3.6 μm 11.81±0.02
Spitzer/IRAC 4.5 μm 12.34±0.02

Note.Photometry has been measured in 1′ apertures centered on the host
galaxy, and bright foreground stars have been masked from the image (except
for F275W where a smaller aperture was used due both to the centrally
concentrated nature of the UV emission and the windowed WFC3 FOV). The
errors given are statistical only. Given the uncertainty introduced by the
masking, and possible low surface brightness features it is reasonable to
assume systematics of ∼0.1 mag. Magnitudes have not been corrected for
foreground extinction.
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typical of those seen in AGNs and low-ionization nuclear
emission line regions (LINERs). However, the relative
weakness of any AGN, combined the large spatial extent of
these lines and their spiral structure is very different to typical
extended emission line regions seen around some AGN. We
therefore conclude that AGN power is not responsible for their
creation. Instead, these features are similar to the so-called
LIER regions (non-nuclear LINER regions) that have been
found in other early-type galaxies without AGN activity (Sarzi
et al. 2010; Singh et al. 2013). These may be driven by
intermediate-aged stellar populations (e.g., hot post-AGB stars)
or shocks. Since these emission lines are not excited by young
stars associated with recent star formation, they cannot be used
to reliably derive a gas-phase metallicity for the galaxy.

4. At the Transient Location

Our imaging shows the transient is located at position offset
8 92 N and 5 18 E of the host galaxy centroid, with a total
projected offset of 10 31±0 01, corresponding to 1.96 kpc
offset at a 40 Mpc distance.23 Our observations provide
constraints on the immediate environment of the transient and
on any underlying source.

4.1. In Emission

Any source underlying the transient position is of significant
interest since it could indicate either a young stellar cluster (and
hence young progenitor) or a globular cluster in which the
neutron star–neutron star (NS–NS) binary may have formed
dynamically (Grindlay et al. 2006). At the location of the
transient in the F606W imaging obtained prior to GW170817
(see also Foley et al. 2017) we place a 2σ upper limit on any
point source by subtracting an isophotal fit to the smooth light
of the galaxy and then by performing aperture photometry on
the galaxy subtracted image. The resulting point-source limit is
F606W>26.4 (2s), corresponding to an absolute magnitude
of M 6.7V > - (note that at 40 Mpc globular clusters should
appear point-like as the HST point-spread function (PSF) is
∼20 pc; indeed point sources in the images around the galaxy
have colors consistent with globular clusters associated with
NGC 4993). This is well down the globular cluster luminosity
function and only ∼30% of Milky Way globular clusters would
evade detection at this limit (Harris 1996). However, clusters
fainter than this limit only contain ∼5% of the stellar mass in
globular clusters. We consider the implications of this further in
Section 5.

There is no detection of the counterpart in F275W images
taken on 2017 August 25 and 2017 August 28 (see Troja et al.
2017). Hence, in addition to constraining the counterpart, they
can also place limits on underlying young populations.
Combining two epochs of F275W observations (exposure time
of 1240 s) places a limit on the UV luminosity of any source of
F275W>26.0 (2σ, AB), corresponding to an absolute
magnitude limit of F275W(AB)−7. This absolute magni-
tude limit is comparable to the UV absolute magnitudes of
massive O-stars or Wolf–Rayet stars and suggests little
underlying star formation. Indeed, combined with the optical
limit from pre-imaging, this indicates that any underlying
young (10 107 8– years) star cluster could have a mass of only a

few thousand solar masses (based on the BPASS models of
Eldridge et al. 2017).
Given the lack of any point source, we can characterize the

location of the transient relative to the host galaxy light,
defining the fraction of surface brightness contained in pixels of
equal or lower surface brightness to the pixel hosting the
transient, the so-called Flight parameter (Fruchter et al. 2006).
This statistic is complicated in this case by the extended low
surface brightness features and the presence of foreground stars
projected onto the galaxy. Masking these stars and considering
light within a large (1¢ radius) aperture suggests that
F 0.6light » . This is at the upper end of those seen in SGRBs
(Fong & Berger 2013), although it should be noted that in
SGRBs at higher redshift, cosmological surface brightness
dimming could result in the omission of low surface brightness
features in the comparison samples. The loss of light at low
surface brightness (compared to the transient position) would
lower the value of Flight. Alternatively, one can consider the
host normalized offset (the offset of the transient from its host
nucleus in units of the effective radius), which in this instance
is also ∼0.6, smaller than the typical SGRB offsets (Fong &
Berger 2013). While these values are consistent with the
distributions seen for SGRBs, the location of GW170817
within its host galaxy is comparable to the most centrally
concentrated 10% of SGRBs.

4.2. In Absorption

We searched for narrow absorption features in the transient
spectrum obtained with MUSE, but did not find any convincing
examples. The transient’s features are too broad to be useful for
velocity measurements, especially since their identification is
uncertain. Hence, the velocity of the source relative to the host
galaxy cannot be directly determined.
Notably, the region around the counterpart shows evidence

for modest extinction of E B V 0.07- =( ) mag based on the
stellar population fits (see Figure 2), assuming an RV=3.1
extinction law. If the extinction directly underlying the
transient position is the same, then in principle this should be
visible as Na I D absorption in the counterpart spectrum, the
equivalent width of which can be calculated from established
relations (Poznanski et al. 2012). Indeed, this doublet is seen in
the sole SGRB spectrum to show absorption features in its
afterglow (de Ugarte Postigo et al. 2014). The expected lines
for E B V 0.07- =( ) mag are shown in Figure 2, where we
have subtracted a scaled version of the annulus spectrum in
order to correct the transient spectrum for the Na I D absorption
that arises from a stellar origin within the transient aperture,
with the shaded region demonstrating the 1s scatter in this
relation. There is no evidence for such absorption. The absence
of interstellar medium (ISM) absorption in the counterpart
spectrum could imply that the transient emission may lie in
front of the stellar population (or gas) in the galaxy. This may
be because it is naturally located within the halo population, or
alternatively could be indicative that the progenitor received a
kick that has placed it outside the bulk of the stellar population.
Ultimately, a re-observation of the explosion site, once the
transient has faded, will allow us to investigate this further by
directly measuring the extinction to the stellar population under
the transient position. However, since the extinction measured
in the annulus around the transient is typical of extinction
across the galaxy (see the top right panel of Figure 3), our value
seems reasonable.

23 This provides a lower limit on the true offset since we cannot measure the
source location relative to its host along our line on sight.
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5. Comparison with Expectations from Binary Evolution

The location of a binary neutron star merger depends on its
initial location, the delay time between the formation of the
second NS and the merger, the kick given to the binary at the
time of NS formation, and the galactic potential in which the
system moves.

Within the Milky Way, the majority of binary neutron stars
are formed in the field through isolated binary evolution, while
a single example exists in a globular cluster, likely formed via
dynamical interactions (Anderson et al. 1990), and similar
interactions may produce a significant fraction of extragalactic
systems (Grindlay et al. 2006).

There is no evidence in our data supporting the dynamical
formation scenario. The closest point-like sources in the stellar
field of the galaxy are approximately 2 5 from the transient
location, corresponding to an offset of ∼500 pc (a lower limit
owing to projection effects). The absence of a globular cluster

at the transient location strongly disfavors a merger within a
globular cluster. Dynamical formation involves a sequence of
three-body (2+1) interactions that leave more massive stars
within tighter binaries (Davies 1995). The rate of these
interactions scales roughly as L r3 2 5 2 (Bregman
et al. 2005), indicating that massive, core-collapsed systems
disproportionately dominate the interaction rate (Davies &
Benz 1995). In this sense, the faintest 30% of globular clusters
contain 5% of the mass in globular clusters, but probably have

5%� of the interactions, indicating a very low probability of
an underlying cluster creating the binary that formed
GW170817. However, two caveats apply to this. First, if a
significant population of black holes remains in the cluster, the
more massive black holes will substitute into compact binaries
during 2+1 interactions and black hole–black (BH–BH)
binaries would be formed at the expense of NS–NS binaries
(e.g., Rodriguez et al. 2016). Second, interactions can eject the
binaries given the low escape velocities of globular clusters.

Figure 2. Bottom: stellar population results in an annulus 1 5–2″ around the transient. The extracted MUSE spectrum (black) with model continuum fit (orange
dashed) and residuals (lower panel). Wavelengths clipped are indicated in red in the residual panel and largely coincide with regions of telluric features (indicated on
fit panel). Shaded regions are masked from the fit. The light and mass contribution of the stellar population models by age (abscissa) and metallicity by mass fraction
(color) to the total fit are shown on the right. Orange tick marks (top axis) indicate the ages of all models used in the fit. The small contribution of the 10Myr stellar
population is not robust to varying the model set used. We consider it an upper estimate of any young stellar population contribution. The best-fit extinction is
AV=0.22 mag. Middle: stellar population fit for the nucleus of NGC4993. The conspicuous emission lines of Hα, [N II], and [S II] are shown in a zoomed-in panel
on the right. Top: a 0 4 radius aperture extracted at the transient location after subtracting the annulus spectrum (scaled by the ratio of the area of the aperture and
annulus). The right panel shows a zoom-in around Na I 5890, 5896ll . Overlaid on the transient spectrum is the Na I absorption expected based on the extinction
derived in the annulus, using the equivalent width relations of Poznanski et al. (2012; see the text) with a 1σ shaded region. The absorption was simply modeled as two
Gaussians with �s s= (annulus) plus a low-order polynomial to fit the continuum. All spectra are normalized to the flux in the range 5590–5680Å.
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With modest velocities and long delay times these may be
indistinguishable from field systems based on their locations,
although it may be possible to distinguish field and
dynamically formed binaries based on their intrinsic properties
(masses, spins, etc.) measured from the gravitational waves
themselves (e.g., Farr et al. 2017; Stevenson et al. 2017; Zevin
et al. 2017).

The absence of any significant young population within the
galaxy, or of young stars underneath the burst position,
suggests that the progenitor of GW170817 was likely old
( 109> years). This old age is consistent with the ages of Milky
Way double neutron star systems (e.g., Tauris et al. 2017).
However, rapidly merging systems are observationally selected
against (because they merge quickly, the time when they are
detectable is short), and some population syntheses suggest that
a significant fraction could have very short delay times if the
progenitor of the second-born neutron star either enters a
second common envelope phase after the helium main
sequence (Dewi & Pols 2003) or stably transfers a significant

amount of mass that is then lost from the binary (e.g.,
Belczynski et al. 2006; Eldridge & Stanway 2016; van den
Heuvel et al. 2017).
The delay times for some of these models are 106~ years or

less (Belczynski et al. 2006), and so binaries could not travel
far from their birth location. The absence of any underlying
cluster or point source close to the transient position can
therefore offer information on the likelihood of a very short
delay progenitor. First, it is unlikely that a low-mass cluster
would be present close to the transient position without other
signs of star formation more widely distributed in the host
galaxy. Second, such a low-mass cluster would be unlikely to
form many massive stars. For a typical initial mass function
(e.g., Kroupa & Weidner 2003), a 1000 M: cluster would be
expected to form ∼10 stars capable of forming supernovae.
Since 101 merging binary neutron stars are expected to form
per million solar masses of star formation (Abadie et al. 2010),
the probability of obtaining such a binary from a single low-
mass star-forming region is very small.

Figure 3. Voronoi binned stellar population property maps of NGC4993 from our stellar continuum fitting. Top row: stellar velocity offset relative to the galaxy
nucleus (left), stellar velocity dispersion (middle), and visual extinction (right). Bottom row: the flux contribution to the best-fit continuum model for young (left),
intermediate (middle), and old (right) stellar populations; the age divisions are indicated on the respective color bars. The galaxy nucleus and transient locations are
indicated by cross and star symbols, respectively. North is up, east is left, and the linear scale at a distance of 40Mpc is shown. Maps are overlaid on a collapsed view
of the MUSE data cube. Masks (gray circles) have been applied around the transient and a foreground star.
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Observations of a single object cannot provide a delay time
distribution for a binary population, but they do demonstrate on
this occasion that the delay time was large.

The question of the kick velocity is even more difficult to
determine. The space velocity of a binary neutron star relative
to the initial velocity of its center of mass in the galactic
potential is set by the kick imparted at each supernova. Such a
kick has two contributing factors, the natal kick to the neutron
star and the mass-loss kick from the binary. The majority of
binaries are disrupted during one of the supernova events; only

those for which the mass loss is small, and the natal kick is
fortuitous in direction, are likely to survive. For this reason it is
likely that the binary neutron star population has slower
velocities than isolated pulsars, and there is evidence to suggest
this is true (Dewi & Pols 2003).
Once kicked, binaries move in the gravitational potential of

their host galaxy. For high-velocity kicks they may be ejected
completely or move on highly elliptical orbits. For weak kicks,
they may orbit much closer to the galaxy and may oscillate
around the radius at which they were formed. We quantify this

Figure 4. Top: velocity map of ionized gas in NGC4993. Velocities are the offsets of [N II] λ6583 emission. The location of the transient is indicated with a star
symbol. Inset shows an [N II] λ6583 narrowband image constructed from the MUSE data cube. The motion of the “arm”-like features is in the radial velocity plane,
implying they are edge-on. Bottom: emission line ratios in NGC4993. Each point represents a spaxel bin where all the diagnostic lines are detected as a signal-to-
noise ratio of 2> . Dividing lines of Kauffmann et al. (2003; pure star formation, orange dashed), Kewley et al. (2001a; theoretical star formation limit, blue)
and Kewley et al. (2001b; Seyfert vs. LIER, green) are shown. The ionized gas regions in NGC4993 are inconsistent with being driven by star formation (SF) and
are better described as extended LIERs (see Sarzi et al. 2010; Singh et al. 2013). The few bins formally within theoretical SF limits show velocity dispersions

100gass > kms−1, inconsistent with typical H II regions that show tens ofkms−1. The position of the integrated emission lines (summing all bins) is shown by a
square on each plot.
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in Figure 5, where we show binaries kicked isotropically at
different velocities from circular orbits at three initial radii
within the host galaxy. Once kicked, these binaries are assumed
to move in the gravitational potential equal to the Milky Way
potential model of Irrgang et al. (2013) with the disk removed.
As a bulge-dominated lenticular galaxy there is little, if any,
disk component in NGC 4993, and this model provides a good
description of the rotational velocities seen in Figure 4. For
long delay times (? orbital period of the binary around the
galaxy), the probability of merging beyond a given radius (for
example, the effective radius) is equal to the fraction of time the
binary spends beyond this radius.

As indicated in Figure 5, a strongly kicked binary with a long
delay time is likely to be found at radii outside the effective
radius, whatever its initial location. Indeed, the presence of the
counterpart of GW170817 relatively close to the center of the
host would favor a small kick if the system is old, as our stellar
population analysis suggests. As with the issue of delay times, a
single event provides little information as to the properties of the
population, but it is worth noting that the proximity of
GW170817 to its host would place it among the most centrally
concentrated ∼10% of SGRBs (e.g., Fong & Berger 2013). This
may suggest that the kick in GW170817 was unusually small,
that it was directed toward us (minimizing the projected offset),
or that a binary in a more extended orbit happened to merge
when passing relatively close to the core of its host galaxy.

6. Summary and Conclusions

We have presented comprehensive imaging and integral field
spectroscopy of the host galaxy and local environment of the
first electromagnetic counterpart to a gravitational-wave source.
These observations provide a unique view of the regions
around this event, and its properties are consistent with those
seen in the population of SGRB hosts. We find a highly
inclined ionized gas disk that is kinematically decoupled from
the stellar velocity field, as well as extended face-on arm/shell

features in the stellar light profile. These indicate the galaxy has
undergone a major merger relatively recently. We find that
∼20% of the galaxy, by mass, is ∼1Gyr old, perhaps as a
result of this merger, while most of the remaining mass is

5 Gyr> old. There is minimal contribution (if any) from a
young stellar population ( 1%� of the mass), implying an old
(Gyr) progenitor. The absence of absorption features in the
counterpart spectrum and moderate extinction of the stellar
population in the vicinity of the transient source offer tentative
evidence that it lies on the near side of the galaxy, either by
chance or due to a kick in our direction.
Galaxy demographics and population synthesis have pre-

viously been used to argue for the origin of SGRBs in compact
object mergers. Since this scenario now seems secure the
direction of inference can now be reversed, and the properties
and locations of SGRBs and gravitational-wave sources can be
used to pinpoint the details of extreme stellar evolution that
lead to the formation of compact object binaries.
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Figure 5. Fraction of time that a binary with a given kick velocity magnitude
spends within R 2 kpce = of the galactic center. Binaries are assumed to form
on circular orbits around the galactic center at initial distances of 1 kpc (blue),
2 kpc (orange), or 4 kpc (yellow) from the center. For formation at 4 kpc from
the center and kicks of 400 km s−1, 7% of binaries are unbound; these are not
included in the plot. All other simulated binaries are bound, and the plot is
reflective of the merger location if the delay time between double compact
object formation and gravitational-wave driven merger is longer than the
dynamical timescale.
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