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ABSTRACT

Following the discovery of the exoplanet candidate Fomalhaut b (Fom b), we present a numerical
model of how Fomalhaut’s debris disk is gravitationally shaped by an interior planet. To produce
the observed disk morphology, Fom b must have a mass Mpl < 3MJ, an orbital semimajor axis
apl > 101.5 AU, and an orbital eccentricity epl = 0.11–0.13. These conclusions are independent of
Fom b’s photometry and support the case that Fom b is a planet. To not disrupt the disk, more massive
planets must have smaller orbits farther removed from the disk; thus, future astrometric measurement
of Fom b’s orbit, combined with our model of planet-disk interaction, can be used to determine the
mass more precisely. If apl ≈ 114 AU, as suggested by a preliminary and model-dependent analysis of
Fom b’s astrometry, then our dynamical model implies Mpl ≈ 0.4MJ. The inner edge of the debris
disk at a ≈ 133 AU lies at the periphery of Fom b’s chaotic zone, and the mean disk eccentricity of
e ≈ 0.11 is secularly forced by the planet, supporting predictions made prior to the discovery of Fom
b. However, previous mass constraints based on disk morphology rely on several oversimplifications.
We explain why our new constraint of Mpl < 3MJ is more reliable. It is based on a global model of the
disk that is not restricted to the chaotic zone boundary. Moreover, we screen disk parent bodies for
dynamical stability over the system age of ∼100 Myr, and model them separately from their dust grain
progeny; the latter’s orbits are strongly affected by radiation pressure and their lifetimes are limited
to ∼0.1 Myr by destructive grain-grain collisions. Parent bodies are evacuated from mean-motion
resonances with Fom b; these empty resonances are akin to the Kirkwood gaps opened by Jupiter.
The belt contains at least 3M⊕ of solids that are grinding down to dust, their velocity dispersions
stirred so strongly by Fom b that collisions are destructive. Such a large mass in solids is consistent
with Fom b having formed in situ.
Subject headings: stars: planetary systems — stars: circumstellar matter — planetary systems: pro-

toplanetary disks — celestial mechanics — stars: individual (Fomalhaut)

1. INTRODUCTION

A common proper motion companion to Fomalhaut
has been imaged by Kalas et al. (2008, hereafter K08)
using the Hubble Space Telescope Advanced Camera for
Surveys (HST ACS) coronagraph. Fomalhaut b (Fom
b) orbits interior to the system’s well-known circumstel-
lar belt of dust (e.g., Holland et al. 1998; Kalas et al.
2005, hereafter K05, and references therein). With ob-
servations at only two epochs to date, the orbit of Fom b
is uncertain, but a semimajor axis of approximately 115
AU is consistent with the data. While Fom b’s ultra-low
luminosity leaves little doubt that it is of remarkably low
mass, sitting well below the regime of brown dwarfs, the
question remains just how low its mass is.

Based on the observed broadband spectrum of Fom b,
K08 estimate an upper limit on the mass Mpl of about
3MJ. We recapitulate their reasoning as follows. Fom
b is detected in HST’s F814W (0.7–0.9 µm) and F606W
(0.45–0.7 µm) passbands in 2006. The F606W flux is
variable; the flux in 2006 was about half that in 2004.
Observations in 2005 with Keck in H band (1.5–1.8 µm)
and in 2008 with Gemini in L-prime (3.2–4 µm) give only
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upper limits.
The F814W flux (observed only in 2006; imaging was

not attempted in 2004 for this passband) can be repro-
duced by thermal emission from a 2–4MJ, 200-Myr-old
planet that formed by core accretion and is of supersolar
metallicity (Hubickyj et al. 2005; Fortney et al. 2008).
Unfortunately, this same model atmosphere underpre-
dicts, by more than an order of magnitude, the F606W
fluxes. At the same time it overpredicts the H-band
3σ upper limit by a factor of a few, and is marginally
consistent with the L-prime 3σ upper limit. From con-
siderations outlined by K08, we can construct two, not
entirely exclusive hypotheses. Hypothesis one: F814W
still traces planetary thermal emission, F606W is con-
taminated by variable Hα emission, and the atmospheric
model requires revision in H band. The Hα hypothesis
is inspired by variable Hα emission from chromospheri-
cally active and/or accreting low-mass stars and brown
dwarfs. The puzzling brown dwarf GQ Lup B offers a
possible precedent (Marois et al. 2007); in either the case
of Fom b or that of GQ Lup B, the Hα luminosity nec-
essary to explain the anomalously large F606W flux is
∼1% that of the bolometric luminosity (unfortunately in
neither case has an optical spectrum been taken). As for
uncertainties in model exoplanet atmospheres (Fortney
et al. 2008; Burrows et al. 2003), these appear greater
in H band than in F814W; the various models disagree
with each other at near-infrared wavelengths by factors
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of a few. Hypothesis two: both F814W and F606W are
contaminated by starlight reflected off an optically thick
circumplanetary disk, and the F606W variability arises
from variable disk accretion onto the planet, possibly im-
plicating Hα again. To explain the detected fluxes in
2006 using reflected light alone, such a disk would have to
be comparable in size to the orbits of Jupiter’s Galilean
satellites. It is not clear, however, how such a disk would
survive for the system age of ∼100 Myr; protosatellite
disks are thought to evolve on timescales shorter than a
few Myr (e.g., Canup & Ward 2002; Mosqueira & Estrada
2003).

Since both hypotheses admit the possibility of addi-
tional sources of luminosity apart from planetary ther-
mal emission, the 3MJ inferred from the observed F814W
flux should be considered an upper limit. As a whole,
this interpretation of Fom b’s photometry is preliminary,
subject to significant revision as both observations and
theory improve.

An alternative route to probing the properties of Fom
b is to exploit the morphology of the circumstellar belt.
Prior to the discovery of Fom b, this approach was taken
by Quillen (2006, hereafter Q06), who built on earlier
work by Wyatt et al. (1999). The striking intrinsic el-
lipticity of the belt of e ≈ 0.11 can be forced by secular
gravitational interaction with a planet on a similarly ec-
centric orbit interior to the belt.4 Fomalhaut b was pre-
dicted by Q06 to occupy an orbit of eccentricity 0.1 and
semimajor axis ∼119 AU, and to have a mass between
about 2×10−5 and 7×10−5 that of the central star. For
a stellar mass of M∗ = 2.3M⊙, this range corresponds to
∼0.05–0.2 MJ.

The predictions of Q06 rest on the idea that the belt in-
ner edge, at semimajor axis ainner = 133 AU, is located at
the outer boundary of Fom b’s chaotic zone. The chaotic
zone is a swath of space enclosing the planet’s orbit inside
of which test particle orbits are chaotic and short-lived,
as a consequence of overlapping first-order mean-motion
resonances (Wisdom 1980). The semimajor axis achaotic

at the edge of this chaotic zone is displaced to either side
of the planet’s semimajor axis apl by

∆achaotic = |achaotic − apl| ≈ 1.3 µ2/7 (1)

where µ = Mpl/M∗. The coefficient of 1.3 arises from
Wisdom’s approximate scaling theory. Though (1) is de-
rived for the case of a planet that occupies a circular
orbit and that interacts with test particles on nearly cir-
cular orbits, Quillen & Faber (2006) find that the µ2/7

scaling law holds also for a planet on a moderately eccen-
tric orbit, interacting with particles on secularly forced
eccentric orbits. Quillen & Faber (2006) prefer, how-
ever, the coefficient of 1.5 that originates from the nu-
merical integrations and eccentricity growth criterion of
Duncan et al. (1989).5 Our work supports the assign-
ment ainner = achaotic made by Q06. However, we will

4 See the textbook by Murray & Dermott (2000) for an introduc-
tion to secular perturbation theory, which essentially treats masses
as orbit-averaged elliptical wires.

5 Duncan et al. (1989) also provide a simple explanation of be-
havior within the chaotic zone (for the case of circular orbits):
particles residing there are perturbed so strongly by the planet
at each conjunction that successive conjunctions occur at uncor-
related longitudes; consequently the particle undergoes a random
walk in semimajor axis and eccentricity, with steps in the walk
corresponding to impulses at every conjunction.

calculate still a third coefficient that best reproduces the
HST images of Fomalhaut’s belt; see our equation (16).

The discovery of Fom b orbiting just interior to the
dust belt appears to confirm the expectation of K05,
made quantitative by Q06, that a planet is responsible
for truncating the inner edge of the belt. There are, how-
ever, several reasons to question the published dynamical
mass constraint of 0.05 . Mpl(MJ) . 0.2, based as it is
on belt morphology:

1. Belt properties depend weakly on planet mass.
For example, ∆achaotic, which governs the relative
locations of the belt inner edge and the planet,

scales only as M
2/7
pl . Similarly weak powers de-

scribe how the velocity dispersion at the bound-
ary of the chaotic zone depends on Mpl; Q06 par-
lays this dependence into an upper limit on Mpl,
on the grounds that too large a velocity disper-
sion violates the observed sharpness of the belt’s
inner edge. (We will see in our work that this ar-
gument does not fully capture the actual behavior
because it neglects how belt particles located some
distance from the chaotic zone boundary influence
the observed sharpness of the edge. In other words,
sharpness can only be reliably computed with a
global model, not one that examines the chaotic
zone boundary only. See Figure 8 and the related
discussion in §3.3.1.)

2. The published dynamical upper mass limit is based
on the purely gravitational, collisionless behavior of
test particles. But the HST observations of Fomal-
haut’s belt are of dust grains, which are influenced
by stellar radiation pressure and interparticle col-
lisions. As explained in §2 (see also Strubbe &
Chiang 2006), the scattered light observations are
likely dominated by the smallest grains still bound
to the star. Of all the solid material orbiting Foma-
lhaut, such grains have the largest ratios of surface
area to mass and are the most seriously affected by
radiative forces and collisions.

3. The lower dynamical mass limit is also suspect be-
cause it is premised on particles colliding indestruc-
tibly and diffusing as members of a viscous circular
ring. The argument underlying the lower limit is
that the planet mass cannot be too small lest dust
grains diffuse into the chaotic zone by interparti-
cle collisions, before the planet can gravitationally
eject them (see also Quillen 2007). But dust par-
ticles, colliding at minimum speeds of ∼100 m/s
(see our §2), likely shatter one another. Moreover,
their trajectories are highly elliptical as a conse-
quence of radiation pressure (Strubbe & Chiang
2006). Their dynamics seem poorly described by
a diffusion equation that conserves particle num-
ber, has constant diffusivity, and assumes circular
orbits.

In this work we present a new numerical model of the
Fomalhaut dust belt. It accounts not only for gravita-
tional sculpting by Fom b, but also for the finite col-
lisional lifetime of dust, the size distribution of grains,
and radiation forces (including Poynting-Robertson drag,
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though it is of minor importance compared to other per-
turbations). Though we do not go as far as generating
a model scattered light image to compare with observa-
tions, we take the first step towards this goal by calculat-
ing the detailed shape of the belt’s vertical optical depth,
τ⊥, as a function of semimajor axis a. We compare this
optical depth profile with the corresponding profile of
the K05 scattered light model, which in turn was fitted
directly to the HST images. From this comparison we
constrain the mass and orbit of Fom b: we calculate the
possible combinations of planet mass Mpl, orbital semi-
major axis apl, and orbital eccentricity epl. These results
are independent of any measurement of Fom b, in partic-
ular of its spectrum. Only as a final extra step do we use
information on Fom b’s observed stellocentric distance
to see if some of our mass-orbit combinations might be
ruled out.

Our work corroborates the overall picture of Q06—
that the planet’s chaotic zone truncates the inner edge
of the belt, and that the planet’s orbital eccentricity in-
duces a similar mean eccentricity in the belt (Wyatt et al.
1999)—but we introduce enough improvements, espe-
cially with regards to our separate handling of unobserv-
able parent bodies and observable dust grains, that our
dynamical constraint on Fom b’s mass supersedes that
of Q06. Perhaps more importantly, because our model
precisely relates Fom b’s mass to its orbit, it can be used
to determine the former once the latter is astrometri-
cally secured by imaging at future epochs. Our model is
simple, robust to uncertainties in input parameters, and
readily applied to other systems.

In §2 we present an overview of the Fomalhaut belt,
estimating its physical properties to order-of-magnitude
accuracy. These estimates inform our choices for the in-
put parameters of our numerical model; that model, and
its output, are detailed in §3. We summarize and discuss
our results—describing also the curious anomalous accel-
eration of Fomalhaut measured by the Hipparcos satel-
lite, and how other planetary companions in addition to
Fom b affect our conclusions—in §4.

2. ORDERS OF MAGNITUDE

We derive basic properties of the Fomalhaut dust belt,
working as much as possible from first principles and
direct observations. The conclusions reached in the fol-
lowing subsections form the basis of our numerical model
in §3.

2.1. Bound dust grains present absorbing, geometric
cross sections

Fomalhaut is a spectral type A star of luminosity
L∗ = 16L⊙, mass M∗ ≈ 2.3M⊙, and age tage = 200±100
Myr (Barrado y Navascues et al. 1997; Barrado y Navas-
cues 1998). The circumstellar debris emits a fractional
infrared excess of LIR/L∗ = 4.6×10−5 (Song et al. 2001).
K05 report that from 0.6 to 0.8 µm wavelengths, the
ring has a spatially integrated apparent magnitude of
mapp = 16.2, nearly entirely due to reflected starlight;
for the star, mapp,∗ = 1.12; therefore the fractional re-
flected luminosity is Lref/L∗ ≈ 10−6. If we ignore order
unity effects introduced by anisotropy in the scattering
phase function (see K05 for a fit to this phase function),
the dust albedo is of order Lref/LIR ≈ 0.02—the grains
are nearly purely absorbing.

Dust is generated by the collisional comminution of
larger parent bodies. The largest parent bodies sit at the
top of the collisional cascade and have lifetimes against
collisional disruption equal to tage. We take these largest
parents to occupy a torus of radius R ≈ 140 AU, annular
width ∆R < R, and uniform vertical thickness 2H < R.
Strubbe & Chiang (2006) refer to this torus as the “birth
ring.” In principle, a grain of given size that is born into
the torus is lost from it in one of four ways: collisional
comminution, expulsion by radiation pressure, ejection
by planetary scattering, or orbital decay by Poynting-
Robertson (PR) drag. In practice, for many debris disks,
the first two channels are more important than the fourth
(Wyatt 2005; Strubbe & Chiang 2006; Thébault & Wu
2008). The ratio of the force of radiation pressure to that
of stellar gravity is

β =
3L∗

16πcGM∗ρs
(2)

for a geometrically absorbing grain of internal density
ρ ≈ 1 g cm−3 and radius s, where c is the speed of light
and G is the gravitational constant. Grains are unbound
from the star when β & 1/2,6 i.e., when

s < sblow ≈ 3L∗

8πcGM∗ρ
= 8 µm . (3)

Because sblow is much greater than the submicron wave-
lengths at which the star principally emits, cross sections
for absorption of radiation by bound grains are indeed
practically geometric, as (2) assumes.

2.2. Radiation Pressure Delivers Grains onto Eccentric,
Long-Period Orbits

Upon release from parent bodies moving on circular
orbits, bound grains move on orbits of eccentricity

e =
β

1 − β
=

sblow

2s − sblow
(4)

and semimajor axis

a =
R

1 − e
. (5)

These expressions, which serve only to guide and which
are not used in our more precise numerical models, ignore
the parent-grain relative velocities with which grains are
born, and also any eccentricity in the parent body or-
bit. Neither of these errors is serious for the large grain
eccentricities of interest here (e & 1/3; see §2.5). The
main point is that radiation pressure flings smaller bound
grains born in the torus onto more eccentric, longer pe-
riod orbits.

2.3. Collisions Between Grains Are Destructive

Colliding belt particles will chip and shatter one an-
other. For an angular orbital velocity ΩR at semi-major
axis R, the relative velocity between grains is at least as
large as the vertical velocity dispersion, ∼ HΩR = 100
m/s. To place this velocity into some perspective, we

6 The critical value of β = 1/2 applies strictly to dust grains re-
leased from parent bodies that move initially on circular orbits. For
dust grains released from parent bodies moving on mildly eccentric
orbits, as is the case in Fomalhaut’s eccentric belt, the critical β
varies with the longitude of release, but is still near 1/2.
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note that it is comparable to the maximum flow speeds
of commercial sandblasting machines.7

As a consequence of radiation pressure, many of the
grains will be travelling on bound orbits having eccen-
tricities on the order of unity (§2.2). Accounting for
orbital eccentricities (in-plane velocity dispersion) only
increases collision velocities, up to a maximum given by
the local Kepler speed of RΩR = 4 km/s. This maxi-
mum is comparable to elastic wave speeds in rock and
will result in catastrophic shattering.

2.4. Optical Depths: Radial and Vertical

Since the grains present largely geometric cross sec-
tions for absorption of starlight, LIR/L∗ equals the frac-
tion of the celestial sphere, centered on the star, that is
subtended by dust grains:

LIR

L∗

=
2πR × 2H × τR

4πR2
=

H

R
τR , (6)

where τR ≪ 1 is the radial geometric optical depth
through the torus. K05 give a model-dependent aspect
ratio of H/R = 0.025; then τR = 1.8 × 10−3.

The vertical optical depth (measured perpendicular to
the belt midplane) is

τ⊥ = τR
2H

∆R
=

LIR

L∗

2R

∆R
, (7)

independent of H . Again from the scattered light obser-
vations, ∆R/R ≈ 0.17 (K05), whence τ⊥ = 5.4 × 10−4.

2.5. Observable Grains in Fomalhaut’s Belt are Bound,
and Their Lifetime is Set by Collisions, Not by PR

Drag

Unbound grains, for which β & 1/2, exit the torus after
a local dynamical time,

tesc(s < sblow) ∼ 1

ΩR
∼ 200 yr . (8)

Because the lifetime of unbound grains, tesc, is much
shorter than the lifetime of bound grains—the latter life-
time is set by collisional disruption; see equation (9)
below—the steady-state population of bound grains will
be proportionately greater than the unbound population.
Combining this fact with the tendency for grain size dis-
tributions to concentrate their collective geometric cross
section at the smallest sizes, we posit that bound grains
near the blow-out size, say sblow < s . 2sblow, are re-
sponsible for much of the observed scattered light. This
view is consistent with the discussion of particle sizes by
K05.

Such grains occupy eccentric orbits, e > 1/3, and are
disrupted by collisions amongst themselves. The lifetime
against collisional disruption is

tcol(sblow < s . 2sblow) ∼ 1

Ω(a)τ
∼ 1

ΩRτR

(
∆R

R

)1/2

× 1

(1 − e)3/2
∼ 7 × 104

(
2/3

1 − e

)3/2

yr , (9)

7 See, e.g., http://www.nauticexpo.com/boat-
manufacturer/sandblasting-machine-19911.html.

where the effective optical depth τ ∼ τR(R/∆R)1/2 ac-
counts for the path length ∼(R∆R)1/2 traversed by a
grain on a highly elliptical orbit through the birth ring,
where densities are highest and collisions most likely oc-
cur. Use of this path length assumes that relative grain
velocities are of order the local Kepler velocity; this is
an acceptable approximation for the order unity eccen-
tricities of interest here. Account of the limited fraction
of time spent within the torus has also been made, via
Ω(a) and (5).

Compare tcol with the Poynting-Robertson drag time,

tPR(sblow < s . 2sblow) =
4πc2ρ

3L∗

E(e)R2s ∼ 2.5 × 107

×
(

s

2sblow

) (
2/3

1 − e

)1/2

yr , (10)

which is the time for an orbit of initial periastron R and
initial eccentricity e to shrink to a point (Wyatt & Whip-
ple 1950). This is of the same order as the time for a grain
to have its pericenter be dragged out of the birth ring, for
∆R not much less than R, which is the case here. The
dimensionless function E(e > 1/3) > 1.9 quantifies the
decay of orbital eccentricity, and diverges as (1− e)−1/2.
Comparison of (9) with (10) shows that as long as e is
not too close to one—i.e., for all particle sizes outside
a tiny interval that just includes sblow—grains are re-
moved from the ring by collisionally cascading down to
the blow-out size, and PR drag presents only a minor loss
mechanism. In other words, Fomalhaut’s disk is Type B
or collision-dominated (Strubbe & Chiang 2006).

Our estimate of the collisional lifetime tcol in (9) in-
forms the duration of our dust particle simulations, in-
troduced in §3.1.2.

2.6. Total Dust Mass Versus Total Parent Body Mass

The mass Md in dust responsible for the scattered light
is

Md ∼ 8π

3
ρsτ⊥R∆R ∼ 10−3M⊕

(
s

2sblow

)
. (11)

The mass Mpb in the largest parent bodies at the top of
the collisional cascade is given by the steady-state con-
dition

Mpb

tage
≈ Md

tcol
(12)

which implies
Mpb ∼ 3M⊕ .

This is a minimum mass for the disk as a whole because
still larger bodies may exist which are collisionless over
tage.

Some workers (e.g., Backman & Paresce 1993) calcu-
late the mass in parent bodies by explicitly assuming a
size distribution appropriate for an idealized collisional
cascade (Dohnanyi 1969) and taking the upper size to
be some value > 1 km. Not only is it unnecessary to
specify a size distribution, but it is not justified to adopt
a specific value for the parent body size without first es-
tablishing that a typical such body can be collisionally
disrupted within the finite age of the system. The super-
kilometer sizes often invoked (e.g., K05) fail this test.
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3. NUMERICAL MODEL

We devise a dynamical model of the Fomalhaut planet-
belt system that reproduces approximately some of the
properties inferred from the HST observations. We com-
pute the shape of the vertical optical depth profile, τ⊥(a),
of dust particles in the belt and match this profile against
that of the K05 scattered light model. We seek in partic-
ular to find those combinations of planet mass and orbit
that yield an inner edge to the belt of ainner = 133 AU.

The procedure is detailed in §3.1; results are given in
§3.2; and extensions of the model, including some vali-
dation tests, are described in §3.3.

3.1. Procedure

Our numerical modeling procedure divides into four
steps, described in the following four subsections,
§§3.1.1–3.1.4. In short, we (1) create a population of
parent bodies that is stable to gravitational perturba-
tions from Fom b over tage; (2) release dust particles from
stable parent bodies and follow dust trajectories in the
presence of radiation forces over the collisional lifetime
tcol; (3) compute the optical depth profile τ⊥(a) of dust
particles at the end of tcol, accounting for their size dis-
tribution; and (4) compare with the K05 scattered light
model, which serves as our proxy for the observations.

3.1.1. Step 1: Create Stable Parent Bodies

Parent bodies (a) execute orbits that are stable to grav-
itational perturbations over tage, (b) occupy the top of
the collisional cascade, which by definition implies that
their orbits are little affected by catastrophic collisions
for times t < tage, and (c) are large enough that radiation
forces are negligible. We assume further that (d) the self-
gravity of the belt is negligible. Thus the problem of sim-
ulating a realistic parent body is a purely gravitational,
three-body problem involving the star, planet, and ex-
terior parent body, where the parent body is treated as
a test particle. Finding stable test particle orbits is a
straightforward matter of specifying their initial condi-
tions, integrating the equations of motion forward for
∼tage, and selecting those particles that survive the in-
tegration.

Integrations of parent bodies are performed with the
swift whm code, written by H. Levison and M. Duncan
(www.boulder.swri.edu/˜hal/swift.html) using the Wis-
dom & Holman (1991) algorithm. We set the stellar mass
M∗ = 2.3M⊙. In each of our five mass models, a planet
of mass Mpl ∈ (0.1, 0.3, 1, 3, 10)MJ resides on a (fixed)
elliptical orbit of semimajor axis apl and eccentricity epl.
These quantities are listed in Table 1 (placed at the end
this manuscript); see below for how we relate epl to apl,
and Step 4 (§3.1.4) for how we select apl given Mpl. The
planet’s orbital plane defines the x-y reference plane for
the system. The planet’s longitude of periastron ω̃pl = 0.
At the start of the integration, the planet is located at
periastron. All orbital elements reported here are stel-
locentric and osculating unless otherwise noted.

Each run begins with Ntp = 104 test particles and lasts
108 yr. Particles are discarded as “unstable” if either
they approach within a Hill sphere RH = (µ/3)1/3apl of
the planet, or their distance from the star exceeds 1000
AU, as a result of gravitational scatterings off the planet.
Particles that survive until the end of the run are deemed

“stable” and are used in subsequent steps of our proce-
dure. The integration timestep is 15000 days, equivalent
to 5–7% of the planet’s orbital period, depending on the
model.

Initial conditions for test particles are as follows. Ini-
tial semimajor axes a are distributed systematically and
uniformly between 120 AU and 140 AU (for the 0.1 MJ

model, the starting particle semimajor axis is 125 AU
since the planet semimajor axis turns out to be apl =
120 AU). Initial eccentricities are set equal to the forced
values given by the classical, linear, secular theory of
Laplace-Lagrange (L-L):

e(a) = eforced(a) =
b
(2)
3/2(apl/a)

b
(1)
3/2(apl/a)

epl (13)

where the b’s are the usual Laplace coefficients (e.g., Mur-
ray & Dermott 2000). Initial inclinations i of test par-
ticles are drawn randomly from a uniform distribution
between 0 and 0.025 rad.8 Our maximum inclination
matches the opening angle of the K05 scattered light
disk model. Initial longitudes of periastron of all par-
ticles equal the secularly forced value ω̃ = 0, correspond-
ing to apsidal alignment with the planet; longitudes of

ascending node Ω̃ are drawn randomly from a uniform
distribution between 0 and 2π; and arguments of peri-

astron ω = −Ω̃ (so that ω̃ = 0). Finally, initial mean
anomalies M are drawn randomly from a uniform distri-
bution between 0 and 2π.

For a given apl in a given model, the planet’s eccen-
tricity epl is such that a test particle at a = 140.7 AU
acquires a secularly forced eccentricity of e = 0.11, as
computed using (13). Such parameters are inspired by
the elliptical orbit fitted by K05 to the brightest portions
of the belt. The planetary eccentricity so chosen is about
epl = 0.12, varying by up to 15% between our five models
(see Table 1).

According to L-L, the initial conditions so prescribed
produce test particle orbits whose eccentricity vectors
e = (e cos ω̃, e sin ω̃) are purely forced; they have and will
have no free component (e.g., Murray & Dermott 2000).
As such, because the planet’s orbit is fixed, belt particle
orbits also should not vary, at the L-L level of approxi-
mation.9 In §3.2.4, we describe the extent to which this
expectation is borne out.

Our initial conditions, which comprise nested, apsi-
dally aligned, purely forced elliptical orbits, are designed
to reproduce the observed elliptical belt of Fomalhaut
(Wyatt et al. 1999; Quillen 2006). However, such forced
orbits are not the only ones that are stable in the vicinity

8 Such an inclination distribution is unphysical because in reality,
there is zero probability density for finding an object with zero
inclination. Nevertheless, we adopt our boxcar distribution for
simplicity.

9 Laplace-Lagrange truncates the secular disturbing function at
O(e2, i2) and so in reality and in numerical integrations, the ec-
centricities and apsidal angles are still expected to vary somewhat
with time with our initial conditions, even if the system were purely
secular. One can avoid such truncation error by employing Gauss’s

perturbation equations for ė and ėω and integrating the planetary
forces over Gaussian wires (e.g., Murray & Dermott 2000), thereby

finding exact forced eccentricities for which ė = ėω = 0. We skip
this refinement, in part because the system is not purely secular;
nearby mean-motion resonances influence the dynamics.
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of Fom b. In §3.3.3, we experiment with a different set
of initial conditions that generate another class of stable
parent body.

3.1.2. Step 2: Integrate Dust Trajectories

Having created an ensemble of stable parent bodies,
we now model the dust generated by such bodies. At
the end of a 108-yr-long integration from Step 1, we take
each stable parent body and have it “release” a dust grain
with the same instantaneous position and velocity as its
parent’s. Each dust grain’s trajectory is then integrated
forward under the effects of radiation pressure and PR
drag. That is, in addition to the gravitational accelera-
tions from the star and the planet, a dust particle also
feels a radiative acceleration (see, e.g., Burns et al. 1979)

arad =
GM∗β

r2

(
r̂ − vr r̂ + v

c

)
(14)

where r = rr̂ is the vector displacement from the star
to the grain, v is the velocity of the grain relative to the
star, and vr = v·r̂ accounts for the Doppler shift in stellar
radiation seen by the grain. We add this radiative accel-
eration to the Bulirsch-Stoer (B-S) integrator swift bs,
written by Levison & Duncan. We prefer to modify the
B-S integrator over the Wisdom-Holman integrator, since
the latter is designed to model a dissipationless Hamil-
tonian system; when PR drag is included, the system is
dissipative, and it is not obvious to us how we should add
the radiative perturbations to the symplectic kick-drift-
kick algorithm. (Nevertheless, adding radiative forces to
symplectic integrators is standard practice in the liter-
ature and has been shown to produce accurate results.)
Though the B-S integrator is slower, it is fast enough
for our purposes since our integration times for Step 2
are short (see below). The accuracy parameter “eps” of
swift bs is set to 10−8. The modified code was tested
on test particles having various β’s, producing results for
radiation blow-out and PR drag in excellent agreement
with analytic and semi-analytic studies (e.g., Wyatt &
Whipple 1950).

From each of the five parent body integrations com-
pleted in Step 1, we generate eight dust simulations
in Step 2, each characterized by a single value of β ∈
(0, 0.00625, 0.0125, 0.025, . . . , 0.4). Dust grains released
with such β’s are mostly still bound to the star, albeit
on highly eccentric orbits for β approaching 0.4. Bound
grains contribute substantially, if not predominantly, to
the scattered light observations: as sketched in §2, be-
cause tPR ≫ tcol ≫ tesc, the lifetime of bound grains
is set by destructive interparticle collisions, not by PR
drag, and the steady-state population of bound grains
greatly outweighs that of unbound grains, by tcol/tesc.

Because the dust lifetime is set by collisions, we extract
dust grain orbits for further analysis in Step 3 after inte-
grating for a time tcol. Following our order-of-magnitude
estimate (9), we set tcol = 105 yr. During the integration,
we discard particles that approach within a Hill sphere of
the planet or whose distances from the star exceed 10000
AU (this is a factor of 10 larger than the cut imposed in
Step 1, because large apastron distances result from the
onset of radiation pressure and do not necessarily im-
ply orbital instability). As Table 1 indicates, few if any
dust particles are discarded in our β-simulations, with
the exception of our 10 MJ model.

-200 -100 0 100 200

X (AU)

-200

-100

0

100

200

Y
 (

A
U

)

1 MJ

 -100 0 100 200

X (AU)

 

 

 

 

 
β=0.1

Fig. 1.— Snapshots of parent bodies (left) and β = 0.1 dust
grains (right), for our 1MJ model. The cross marks Fomalhaut,
while the solid circle marks Fomalhaut b. Parent bodies are imaged
after an integration time of tage + tcol. Dust particles are released
from parent bodies with zero relative velocity after tage and their
trajectories integrated forward with β = 0.1 for tcol. Red ellipses
correspond to the inner and outer boundaries of the K05 scattered
light model (ainner = 133AU, aouter = 158AU, e = 0.11). Radia-
tion pressure spreads dust particles outward from where they were
born, but leaves their inner boundary practically coincident with
that of parent bodies.

In §3.3.2, we test the sensitivity of our results to tcol,
whose value we know only to within factors of a few.
In that subsection we also examine whether our results
change significantly if we model the dust more realisti-
cally by releasing grains gradually over tcol.

Figure 1 provides sample snapshots of dust grains and
their parent bodies projected onto the x-y plane, for our
1MJ model.

3.1.3. Step 3: Compute Optical Depth Profile

If we had a sufficiently large number of dust parti-
cles, we could simply take a snapshot of each Step 2
β-simulation after tcol and count the number of dust par-
ticles per unit x-y area of the belt. We would thereby
measure the surface density Nβ(x, y), and by extension
the vertical optical depth τ⊥(x, y). In practice, we do
not have enough particles, and such an exercise produces
noisy results.

We greatly improve the signal-to-noise by spreading
each dust particle along its orbit according to how much
time it spends traversing a given segment of its orbit.
In other words, we replace each dust particle with its
equivalent Gaussian wire, and measure the optical depth
presented by the collection of wires. We refer the Kepler
elements of a dust particle’s orbit to (1 − β) times the
stellar mass; otherwise the elements would not remain
constant in a two-body approximation.

First we construct an eccentric grid by partitioning the
x-y plane into a series of nested, confocal ellipses, all
having the same eccentricity of 0.11 (K05), and having
semimajor axes running uniformly from a1 = 100 AU to
aN = 220 AU in steps of ∆a = 0.5 AU. Our goal is to
measure τ⊥(ai), the average optical depth between the
ith ellipse having semimajor axis ai and the (i + 1)th el-
lipse having semimajor axis ai+1 = ai + ∆a. Each dust
particle orbit is divided into 1000 segments spaced uni-
formly in true anomaly from 0 to 2π. Each segment maps
to a certain location on the grid (i.e., the x-y position of
each segment falls between two adjacent ellipses on the
grid). Associated with each segment is an orbital weight,
equal to the fraction of the orbital period spent travers-
ing that segment (the sum of all orbital weights for a
given particle/orbit equals one). The orbital weight for
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each segment is added to its grid location. This process is
repeated over all segments of all orbits. Finally, at each
grid location ai, the sum of orbital weights is divided
by the area of the annulus extending from the ith ellipse
to the (i + 1)th ellipse. This yields the relative surface
density profile Nβ(ai), for a simulation characterized by
β.

The various Nβ profiles for our 1MJ model are plotted
in the top panel of Figure 2. The profiles are normal-
ized to the peak of the N0 (β = 0) profile. Since the
number of dust particles is practically constant across
all β-simulations within a given mass model (Table 1),
the decreasing height of each Nβ profile with increas-
ing β simply reflects how dust particle orbits become in-
creasingly eccentric and elongated with increasing β (cf.
equation 4). In other words, the same number of parti-
cles is being spread into a disk that extends farther out
the greater the radiation pressure. At the same time, the
peaks of the Nβ profiles hardly move with increasing β:
as long as the grain is still bound to the star, it must
always return to the same stellocentric distance at which
it was released, no matter how strongly it feels radiation
pressure. That release distance is located in the birth
ring (Strubbe & Chiang 2006) or, more accurately, the
birth ellipse of parent bodies, near a ≈ 130–140 AU; see
the left-hand panel of Figure 1.

Once all the Nβ profiles are in hand, we combine them
linearly to produce the total optical depth profile τ⊥:

τ⊥ =
∑

β 6=0

Nβ
maxN0.00625

maxNβ

(
β

0.00625

)q−3

+ N0
maxN0.00625

max N0
(1 +

√
2) . (15)

The rationale behind this formula is as follows. As Figure
2 indicates, the maxima of the Nβ profiles are all situated
in the birth ring. Following Strubbe & Chiang (2006),
we posit that the size distribution of grains in the birth
ring is given by a Dohnanyi (1969) cascade, with differ-
ential power-law index q = 7/2. For such a power-law
size distribution, the collective surface area or geometric
optical depth, evaluated per logarithmic bin in β, scales
as βq−3 (∝ s3−q). The two factors multiplying Nβ in the
sum in (15) enforce this scaling in the birth ring (whose
location is traced by the maxima of the surface density
profiles), and we have adopted the β = 0.00625 bin as
our reference bin.

The last term proportional to N0 accounts for the opti-
cal depth contributed by grains having 0 < β < 0.00625.
We take the surface density profile of such grains to be
given by N0; this is a good approximation, as there is
little difference between N0.00625 and N0 (Figure 2, top
panel). Since our grid of models for β ≥ 0.00625 is log-
arithmic in β—successive bins are separated by factors
of B = 2—we extend the same logarithmic grid for β <
0.00625. Then the optical depth coming from all grains
having β < 0.00625, scaled to the optical depth in our
β = 0.00625 reference bin, is

∑∞
j=1(1/B)j(q−3) = 1+

√
2.

3.1.4. Step 4: Compare with Observations

A rigorous comparison with observations would require
us to produce a scattered light image based on our dy-
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Fig. 2.— Top panel: Surface density profiles of dust grains for our
1MJ model, computed tcol = 105 yr after release, normalized to the
peak of the β = 0 curve. These profiles are computed by binning
wire segments on a fixed elliptical grid, as described in the main
text under Step 3 of our procedure. Profiles shrink vertically and
widen horizontally with increasing β, reflecting how increased ra-
diation pressure spreads particles outward by amplifying apastron
distances. By contrast, periastron distances are more nearly con-
served for bound particles, since they always return to the birth
ring regardless of the strength of radiation pressure. Thus the
peaks of the Nβ profiles, which mark the location of the birth ring
of parent bodies (see left panel of Figure 1), hardly shift with β.
Bottom panel: Vertical optical depth profile (solid line) obtained
by adding together the individual Nβ profiles (dotted lines), ap-
propriately weighted according to a Dohnanyi size distribution (see
equation 15). At a . 160AU, the profile resembles that of the K05
scattered light model (dashed line), which itself is an approximate,
idealized, and non-unique representation of the HST observations.
Discrepancies at large a & 160 AU are expected, in large part be-
cause the HST images are too noisy to usefully constrain the K05
model there.

namical model. This is a considerable task. Our τ⊥ pro-
file, combined with the vertical density distribution and
a grain scattering phase function, would be used to cal-
culate the direction-dependent emissivity of the belt as
a function of 3D position. This emissivity model would
then be ray-traced at a non-zero viewing angle to produce
a model scattered light image. Various parameters (e.g.,
normalization of τ⊥, grain scattering asymmetry param-
eter, viewing angle) would need to be adjusted, including
input parameters from Steps 1–3 (distribution of initial
semimajor axes, distribution of initial inclinations), to
produce a good subtraction of the observed image.

In this first study, we attempt none of this. Instead
we compare the τ⊥ profile given by (15) with the corre-
sponding optical depth profile of the K05 scattered light
model, focussing on the one belt property that seems
most diagnostic of planet mass and orbit: the belt’s in-
ner edge. The K05 optical depth profile extends from
ainner = 133 AU to aouter = 158 AU and falls as a−8.5

(their fitted volumetric number density of grains falls as
a−9, while the fitted vertical thickness of the belt in-
creases as a0.5). In our dynamical modeling, for given
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planet mass Mpl, we adjust only the planet semimajor
axis apl and repeat Steps 1–3 until the minimum semima-
jor axis at which τ⊥ reaches half its maximum value—the
“half-maximum radius”—equals ainner = 133 AU.

Since our dynamical models are anchored to ainner, we
should have a sense of the uncertainty in this parameter.
The K05 model is based on fits “by eye.” From the visual
fits, the uncertainty is about ±1 AU, slightly larger than
the size of a 2-pixel resolution element (0.1 arcsecond or
0.77 AU; the images are binned 2 × 2 before they are
modeled, to increase signal-to-noise). The error in ainner

propagates into our constraints on planet mass.
It is well to appreciate that while our general goal is

to reproduce the shape of the optical depth profile of
the K05 scattered light model, that model is itself highly
idealized, characterized by knife-edge sharp inner and
outer edges and simple power-law behavior. Fitting by
eye means the model is at best approximate. And as K05
caution, only a restricted azimuth of the belt (near their
quadrant “Q2”) was analyzed in detail to produce their
fit parameters. Therefore we should neither aim for, nor
expect, perfect agreement between our dynamical model
and the K05 model. Our task instead is to use the K05
model as a guide, to identify robust trends and to rule
out those regimes of parameter space for Fom b that give
blatantly poor agreement with observation.

Lastly, neither our dynamical model nor the K05 scat-
tered light model should be trusted at large a & 160 AU.
At large distance, barely bound grains whose β’s are ar-
bitrarily close to the blow-out limit of ∼0.5 dominate
τ⊥. Our set of 8 β-simulations lacks the resolution in
β to accurately model this outer disk (see Strubbe &
Chiang 2006 for an analytic treatment appropriate for a
circular birth ring). Observationally, the HST images at
stellocentric distances & 158 AU are dominated by the
sky background; see Figure 3 of K05.

3.2. Results

In §3.2.1 we give an approximate formula relating the
planet mass to the width of the chaotic zone, based on
our five mass models. In §3.2.2, we compare our opti-
cal depth profiles with that of the K05 scattered light
model. Based on this comparison we argue against large
planetary masses for Fom b. In §3.2.3 we argue the same
point by comparing our model planetary orbits with the
observed stellocentric distance of Fom b. Finally, the un-
derlying dynamics of parent bodies and of dust particles
is discussed briefly in §3.2.4.

3.2.1. Chaotic Zone Width

In Figure 3, we overlay the τ⊥ profiles of our five mass
models together with the optical depth profile of the K05
scattered light model. As described in §3.1.4, the planet
semimajor axis apl for each mass model is chosen such
that the “half-maximum radius”—the smallest semima-
jor axis at which τ⊥ attains half its peak value—equals
K05’s ainner = 133 AU. The apl’s so determined are listed
in Table 1 and also annotated on Figure 3. They are such
that the semimajor axis separation between belt inner
edge and planet is given by

ainner − apl = 2.0 µ2/7apl , (16)

with less than 6% variation in the coefficient across mass
models, and where ainner = 133 AU. Because we are
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Fig. 3.— Vertical optical depth profiles of our five mass models
(black lines), overlaid with that of the K05 scattered light model
(blue dashed line). Parameters for our dynamical models are listed
in the inset and are such that the “half-maximum radius”—the
minimum semimajor axis for which τ⊥ attains half its maximum
value—equals 133 AU, the innermost semimajor axis of the K05
model. Models for which Mpl ≤ 1MJ do equally well in reproduc-
ing the K05 model. As Mpl increases, the τ⊥ profiles widen because
the planet increasingly perturbs dust grains onto eccentric orbits.
The 10MJ model is probably unacceptably wide. At a & 160AU,
neither the dynamical model nor the K05 model is trustworthy; the
former suffers from poor resolution in β, while the latter is limited
by sky background (see Figure 3 of K05).

connecting more directly to the HST observations, our
Fomalhaut-specific coefficient of 2.0 is preferred over the
smaller coefficients cited by previous works; accuracy
matters for determining planet mass, whose value scales
strongly as the 7/2 power of distance measurements.
Measured in Hill radii (evaluated using apl), the sepa-
ration ainner − apl ranges from 3.7 to 4.5 RH in order of
decreasing Mpl.

3.2.2. Comparison of τ⊥ Profiles Implies Mpl < 3MJ

What resemblance there is in Figure 3 between dynam-
ical and scattered light τ⊥ profiles leads us to believe that
we are on the right track towards understanding the un-
derlying properties of the Fomalhaut planet-belt system.
We are especially encouraged when we consider that with
the exception of apl, none of our model parameters (e.g.,
grain size index q, distribution of initial semimajor axes)
has been adjusted from its naive standard value. And as
we emphasized at the end of §3.1.4, the K05 scattered
light model is itself highly idealized and approximate,
and does not represent a unique model of the observa-
tions. In particular, the K05 model idealizes the inner
edge as a step function, but smoother profiles also seem
possible; the degree of smoothness may help to constrain
q.

Discrepancies at large a & 160 AU are not serious, since
both the dynamical and scattered light models are known
to fail there (§3.1.4). The deficiency in our dynamical
model can be remedied by having a finer grid in β near
the blow-out value of ∼0.5, while improvements in the
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Fig. 4.— Snapshots of parent bodies (left) and β = 0.1 dust
grains (right), for our 3MJ model. Compare with the 1MJ model
shown in Figure 1. The larger the planet mass, the more dust
particles are perturbed by the planet into a more spatially extended
disk.

scattered light model await deeper imaging campaigns.
As Mpl increases, the τ⊥ profiles broaden—see in par-

ticular the curve for 10MJ. Upon release, dust parti-
cles find themselves in a weakened stellar potential be-
cause of radiation pressure. More massive planets more
readily perturb dust onto more eccentric orbits that ex-
tend both inside and outside of the birth ring. This is
further illustrated in Figure 4, which shows a snapshot
of β = 0.1 grains for Mpl = 3MJ. Moreover, as docu-
mented in Table 1, planetary perturbations are so severe
for our 10MJ model that about 1/3 of the dust particles
launched with β = 0.05 are discarded as unstable within
tcol = 105 yr. (Why β = 0.05? Larger β grains are, upon
release, repelled immediately away from the planet onto
highly eccentric trajectories by radiation pressure alone
and are therefore less likely to be rendered unstable by
the planet. Smaller β grains share essentially the same
stability properties as the parent bodies.)

The τ⊥ profile for Mpl = 10MJ is probably unaccept-
ably broad: at 140 AU . a . 160 AU, the dynamical
model predicts too large an optical depth compared to
the K05 model, by about a factor of two. At these dis-
tances, a factor of two overluminosity in the belt is not
easily accommodated, as judged from the error bars on
the observed surface brightness profile—see Figure 3 of
K05. This same 10MJ model also produces a tail ex-
tending inward to a . 120 AU, but the observations,
whose dynamic range in surface brightness is limited to
less than 10:1 (see Figure 3 of K05), probably cannot rule
out such a feature. We have verified that the excessively
large τ⊥ at a & 140 AU follows primarily from the large
eccentricities acquired by β ≈ 0.2–0.4 dust particles from
planetary perturbations. By contrast, the Mpl ≤ 1MJ

models, which produce practically identical τ⊥ profiles,
appear compatible with the K05 model, given the various
limitations of the latter.

The low-mass models having Mpl ≤ 1MJ have inner
edges that are practically identically sharp. A mea-
sure of the sharpness is the distance over which τ⊥ rises
from the half-maximum radius to the semimajor axis at
which τ⊥ peaks, normalized by the half-maximum radius.
This fractional distance is δ = 4.5 AU/133 AU = 0.034.
Quillen (2006) recognizes that in fitting the observed
drop-off in surface brightness for a belt that is inclined to
our line of sight, a trade-off exists between the belt’s ver-
tical and radial density profiles. Either the belt can have
a finite vertical thickness and be knife-edge sharp in the

radial direction (as in the K05 scattered light model); or
have zero vertical thickness and drop off gradually in the
radial direction; or be characterized by some intermedi-
ate combination. In this context, our measure for the
fractional radial drop-off distance, δ = 0.034, compares
promisingly with the fractional vertical drop-off distance
inferred by K05, 2H/R = 0.025. In the future, we will
have to adjust both radial and vertical drop-off distances
to better reproduce the scattered light observations. The
vertical thickness of the belt appears to be fairly easily
adjusted in our model, given that the inclinations of our
dust particles are mostly unchanged from the assumed
initial inclinations of our parent bodies (see Figure 7 and
related discussion in §3.2.4).

In the bottom panel of Figure 2, we plot as dotted
curves the separate terms in equation (15) that add up
to τ⊥. The terms corresponding to larger β (or smaller
grain size s ∝ 1/β) dominate, as a consequence of our
assumption that the grain size distribution in the birth
ring follows a Dohnanyi law. That law apportions the
bulk of the geometric surface area in the smallest grains.

3.2.3. Fom b’s Current Stellocentric Distance Implies
Mpl < 3MJ

Each of our mass models specifies a certain orbit for
Fom b (Table 1) that is tuned, through multiple itera-
tions of Steps 1–4, to generate the observed ellipticity
of the belt and to yield a half-maximum radius equal to
K05’s ainner = 133 AU. If the apocentric distance of a
model orbit is less than the observed stellocentric dis-
tance of Fom b, then that model can be ruled out.

Currently, only the distance between Fom b and its
host star projected onto the sky plane is known. In 2006,
that projected distance was 97.6 AU. Inferring the true
stellocentric distance requires that we de-project the or-
bit of Fom b. But with only two epochs of observation,
a unique de-projection is not possible. Nevertheless, we
can perform a rough de-projection by making a few as-
sumptions. We assume that the planet’s orbit is oriented
such that its semimajor axis lies in the plane of the sky
and is parallel to the line joining the observed belt ansae.
We also assume that the inclination of the planet’s or-
bit to the sky plane equals 65.6◦, the same as that in-
ferred for the belt orbital plane (K05). These assump-
tions are reasonable. K05 fit and de-project an ellipse
to the brightest portions of the belt. They find that the
true semimajor axis of the ellipse is not strongly inclined
to the line joining the observed belt ansae—see Figure 1
of K05. We expect the same to be true for the planet’s
orbit, since it is apsidally aligned with that of the belt.10

In addition, the mean belt plane should coincide with
that of the planet’s orbital plane, by virtue of differen-
tial precession of the ascending nodes of individual belt
particle orbits.10

The resultant de-projected stellocentric distance of
Fom b in 2006 is 119 AU, with a systematic error of
probably no more than a couple AUs. Such a distance
argues against our 10MJ model, for which the apocen-

10 Unless there are more planets that significantly alter the ec-
centricity and inclination evolution of belt particles, in which case
our procedure would need to be revised starting at Step 1. More
planets may well exist in the Fomalhaut system, but the proxim-
ity of Fom b to the belt suggests that Fom b dominates the belt’s
dynamics. See also the discussion in §4.
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tric distance of Fom b is 107 AU. The discrepancy is
depicted in Figure 5. That same figure shows that the
3MJ model is also inconsistent, but only marginally so,
and without a proper de-projection, we hesitate to rule
it out. Lower masses Mpl ≤ 1MJ are, by contrast, easily
compatible. These findings reinforce those based purely
on a comparison of the optical depth profiles (§3.2.2).

3.2.4. Parent Body and Dust Particle Dynamics

In Figure 5, we supply sample histograms of time-
averaged semimajor axes of stable parent bodies gener-
ated in Step 1. The time average is performed over a 105-
yr-long window (with β = 0) following each 108-yr-long
integration. Intriguingly, parent bodies appear evacu-
ated from exterior mean-motion resonances established
by Fom b, even outside the planet’s main chaotic zone.
The reasons for this are likely analogous to why the so-
lar system’s Kirkwood gaps, located at Jupiter’s interior
mean-motion resonances, are empty of asteroids (Wis-
dom 1982, 1983, 1985). Study of this phenomenon, which
depends on the non-zero eccentricity of the planet’s orbit,
is deferred to future work.

Figure 6 plots the eccentricity vectors of the parent
bodies at the end of 108 yr (black points). While they
remain clustered near their initially purely forced values,
there is a dispersion that is not predicted by L-L: the par-
ent bodies acquire free eccentricities despite having none
to start with. The more massive the planet, the greater
the free eccentricities that develop. This same behavior
was found by Quillen (2006) and Quillen & Faber (2006),
who attributed it to forcing by a mean-motion resonance
just outside the chaotic zone.

Figure 6 also describes how dust particles (colored
points) born from parent bodies acquire free eccentric-
ities. Initial free eccentricity vectors are distributed
roughly axisymmetrically about the forced eccentricities.
The initial free phase depends on the orbital phase of re-
lease. For example, a dust particle released at the parent
body’s periastron gains a free eccentricity vector in the

+k̂ direction (total eccentricity increases), while release

at apastron yields a free eccentricity in the −k̂ direction
(total eccentricity decreases, at least for β not too large).
Though these radiation-induced free eccentricities of dust
grains are much larger than the free eccentricities ac-
quired by parent bodies, they do not necessarily lead to
increased blurring of the belt inner edge, because the
semimajor axes of dust grains shift correspondingly out-
ward by radiation pressure as well (cf. equation 5). We
have verified that the various Nβ surface density profiles
for Mpl ≤ 1MJ have comparably sharp inner edges for
all β, as gauged using our fractional width parameter δ.
For further discussion of what influences the sharpness
of the inner edge, see §3.3.1.

Finally, in Figure 7 we examine how the orbital in-
clinations of stable parent bodies change after 108 yr.
Laplace-Lagrange predicts that the mutual inclination
between planet and particle is conserved, and indeed
most inclinations are little altered from their initial val-
ues (which span up to 0.025 rad). Fewer than 10% of all
surviving parent bodies have final inclinations that ex-
ceed initial inclinations by more than 0.0025 rad. Excited
bodies are localized to mean-motion resonances. Even in
the vicinity of a resonance, the fraction of bodies that

       
 

10

100

1000
0.3 MJ 6:5

11:9
5:4

9:7
4:3

       
 

10

100

 

N
um

be
r 

of
 s

ta
bl

e 
pa

re
nt

 b
od

ie
s 

(i
n 

0.
1 

A
U

 b
in

s)

1 MJ

4:3 7:5

       
 

10

100

 
3 MJ

3:2

90 100 110 120 130 140 150
1

10

100

 

Time-averaged semimajor axis (AU)

10 MJ

5:3
7:4

Fig. 5.— Histogram of time-averaged semimajor axes of parent
bodies that survive for 108 yr in the vicinity of Fom b. The bin
width is 0.1 AU, and the time average is performed over 105 yr.
Each panel corresponds to a different mass model, as annotated.
The black circle in each panel marks the semimajor axis of Fom
b, with error bars extending from the model orbit’s pericentric
distance to its apocentric distance. Only model orbits correspond-
ing to Mpl . 1MJ are consistent with the estimated de-projected
stellocentric distance of Fom b in 2006 (dotted vertical line). Sta-
ble parent bodies are located outside the planet’s chaotic zone, at
semimajor axes greater than the planet’s by about 2µ2/7apl. In-
side the chaotic zone, first-order mean-motion resonances overlap
and particle orbits are short-lived. Outside the chaotic zone, par-
ent bodies reside stably on secularly forced eccentric orbits, with
occasional gaps located at mean-motion resonances as indicated.
The gaps are evacuated for reasons likely analogous to why the
solar system’s Kirkwood gaps are empty of asteroids.

have their inclinations pumped is small. For example,
in our 1MJ model, only 10% of all stable parent bodies
having time-averaged semimajor axes between 132 and
133.1 AU—particles right at the inner edge of the belt,
in the vicinity of the 4:3 resonance—have final inclina-
tions exceeding initial inclinations by more than 0.0025
rad. The near constancy of inclination should simplify
future modelling efforts: whatever vertical thickness of
the belt is desired to match the scattered light images
can be input into the dynamical model as an initial con-
dition, in Step 1.

3.3. Extensions and Refinements

In §3.3.1 we reconcile our results on the sharpness of
the inner belt edge with those of Q06. In §3.3.2 we ex-
amine how robust our optical depth profiles are to un-
certainties in tcol and to our simplifying assumption that
the profile is adequately simulated by releasing grains
from parent bodies at a single time. In §3.3.3 we ex-
periment with different test particle initial conditions to
see whether they might yield superior fits to the obser-
vations.
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apsidally aligned with the planet’s orbit, deviating by less than
±15◦ in most cases. The deviations, i.e., the dispersions in free
eccentricity, increase with Mpl. This same behavior was found by
Quillen (2006). However, contrary to that work, we find that the
increased dispersion does not necessarily imply a more spatially
diffuse inner edge to the belt; see Figure 8 and §3.3.1. Also shown
are β = 0.1 dust particles 104 yr after release (red points), and
those same dust particles 105 yr after release (blue points). The
trajectory of a typical dust particle is shown sampled every 103 yr,
starting from release. Note the large eccentricity variations for the
3 MJ model.

3.3.1. Sharpness of Inner Belt Edge

In Figure 3, we found that the sharpness of the belt’s
inner edge, as gauged by our measure δ (see §3.2.2),
hardly varied with Mpl ≤ 1MJ. This finding is seemingly
at odds with that of Q06, who gauges sharpness using the
velocity dispersion of parent bodies at the boundary of
the chaotic zone, and who finds that it increases smoothly
as µ3/7. As a consequence of this relation, Q06 concludes
that Mpl cannot exceed ∼7× 10−5M∗ = 0.2MJ and still
have the belt edge be as sharp as the observations imply.
Indeed we also found in Figure 6 that the velocity disper-
sion of parent bodies, as indicated by their spread in free
eccentricities, increased smoothly with Mpl, in apparent
agreement with Q06. Yet the smoothly growing velocity
dispersion is not reflected in the relative sharpness of our
optical depth profiles across mass models.

How can this be? It might be thought that the dis-
crepancy arises because Q06’s calculation of the velocity
dispersion pertains to parent bodies, while our calcula-
tion of τ⊥ involves dust. While as a point of principle our
calculation would be preferred because the observations
are of dust and not of parent bodies, this explanation
does not get at the heart of the problem, as we find the
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percentages are indicated in each panel. For comparison, the initial
distribution of inclinations extends uniformly from 0 to 2.5× 10−2

rad. Those few objects that have their inclinations amplified are
localized to mean-motion resonances, labelled only for the middle
panel.

same invariant sharpness with planet mass characterizing
the surface density profiles of our parent bodies.

The answer instead is that the sharpness of the in-
ner edge does not depend only on the velocity dispersion
of particles located strictly at the chaotic zone bound-
ary. Particles located at some radial distance from the
boundary, further interior to the belt, also contribute
to the sharpness. That is because sharpness is a rela-
tive quantity, measured relative to the maximum of τ⊥,
and this maximum does not occur exactly at the chaotic
zone boundary. Sharpness is appropriately measured as
a relative quantity, since the observations are limited in
dynamic range: as Figure 3 of K05 indicates, only the
maximum in surface brightness, and values greater than
∼10% of the maximum, are measurable.

To illustrate our point, we plot in Figure 8 the sur-
face densities of stable parent bodies for two mass mod-
els, 0.3MJ and 10MJ. For the comparison with Q06 to
be fair, we must analyze only the parent bodies, since
the conclusions of Q06 regarding inner edge sharpness
pertain to collisionless, radiation-free particles; in other
words, the test particles of Q06 are our parent bodies.
From Q06 we would expect that the 10MJ model pro-
duces an inner edge that is (10/0.3)3/7 = 4.5× more
diffuse, but the bottom panel of Figure 8 shows that
this is not the case; in fact, if anything, the 0.3MJ pro-
file appears more diffuse. In the top panel of Figure 8
we show the same two models except that we include
only particles having the smallest stable semimajor axes:
a < 132 AU for Mpl = 0.3MJ and a < 136 AU for
Mpl = 10MJ. These profiles, which more strictly sam-
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Fig. 8.— Reconciling our findings on the sharpness of the belt
inner edge with those of Q06. Top panel: Surface density profiles
of stable parent bodies for two mass models, 0.3MJ and 10MJ,
including only those bodies having the smallest semimajor axes as
indicated (cf. Figure 5). Only parent bodies are considered to
compare fairly with Q06, whose conclusions regarding inner edge
sharpness pertain to collisionless, radiation-free test particles. In
qualitative agreement with Q06, the 10MJ model yields a more
diffuse inner edge, a consequence of that model’s larger velocity
dispersion at the chaotic zone boundary (cf. Figure 6). Bottom
panel: Surface density profiles of the same two models with no
restriction on semimajor axes. Now the inner edges are of similar
sharpness—in fact the 10MJ profile appears slightly sharper than
the 0.3MJ model—indicating that sharpness is not uniquely related
to edge velocity dispersion, contrary to the implicit assumption of
Q06.

ple the chaotic zone boundary, are more consistent with
Q06—the 0.3MJ profile is steeper than the 10MJ profile.
We conclude that sharpness cannot be reliably computed
without including contributions from particles that are
located some distance from the edge. Sharpness cannot
be calculated as if it were a local quantity specific to the
minimum stable semimajor axis; the shape of the ob-
served surface brightness profile reflects an amalgam of
semimajor axes.

3.3.2. Variations in tcol and Gradual Release of Grains

According to our standard procedure, grain surface
densities and optical depths from our β-simulations are
extracted after an integration time of tcol = 105 yr, a
value inspired from our order-of-magnitude estimate (9)
of the collisional lifetime. In the top and middle pan-
els of Figure 9, we demonstrate that our results are not
sensitive to uncertainties in tcol. We present test results
for β = 0.2 and β = 0.4 since those cases contribute
most to τ⊥ for our assumed Dohnanyi size distribution.
Varying tcol from 3 × 104 yr to 3 × 105 yr produces prac-
tically identical results for the surface density of grains.
Only for the β = 0.2, tcol = 3 × 105 yr run is there a
slight ∼1 AU shift of the surface density profile, a con-
sequence of Poynting-Roberton drag. Such drag affects
β < 0.2 grains even less. The highest β grains are also

relatively immune from pericenter decay—see the middle
panel of Figure 9 for the case β = 0.4—because of the
large eccentricities and semimajor axes induced by radi-
ation pressure upon release (Wyatt & Whipple 1950, see
also our equation 10).

We can also check whether our simple procedure of
releasing grains at a single time is sound. In reality,
the belt at any given moment will contain grains having
a variety of ages, ranging from 0 (just released grains)
to tcol (grains just about to be shattered to sizes small
enough to be blown out by radiation pressure). We better
simulate the gradual release of grains by adding together
surface density profiles computed from grains released
at multiple times. We divide the interval tcol into 10
release times, uniformly spaced by ∆t = tcol/10, and
generate separate integrations for each time. That is, for
the ith release time, we integrate the stable parent bodies
(generated from Step 1) forward with β = 0 for i∆t, and
then continue integrating the released dust grains with
β 6= 0 for (10 − i)∆t. The resulting superposition of
integrations, for β = 0.2 and tcol = 105 yr, is shown in the
bottom panel of Figure 9; it is nearly indistinguishable
from our standard result. We have checked that ring
shape is independent of grain age t for 1/Ω ≪ t < tcol,
because tcol is too short a time for grains to evolve away
from their birth orbits (say by PR drag), and 1/Ω is the
timescale for grains to phase mix.

The experiments described in all three panels of Fig-
ure 9 also show that our standard surface density and
optical depth profiles do not reflect dust features that
vary with the orbital phase of the planet. In varying tcol
and superposing snapshots taken at different times, we
are extracting surface densities corresponding to random
orbital phases of the planet.

3.3.3. Resonant Particles as Another Class of Stable
Parent Body

All our parent bodies are initialized with purely
forced eccentric orbits, as calculated using the Laplace-
Lagrange secular theory. Their orbits after 108 yr resem-
ble their initial ones, with the addition of a small free
component.

Here we try a different set of initial conditions: os-
culating e = 0. According to L-L, this corresponds to
assigning particles free eccentricities equal in magnitude
to their forced eccentricities (see, e.g., Murray & Der-
mott 2000). The top panel of Figure 10 documents the
resultant time-averaged semimajor axes of stable par-
ent bodies (those that survive for 108 yr), for the case
Mpl = 0.3MJ. All other initial conditions apart from the
test particles’ eccentricities are specified the same way as
for our standard 0.3MJ model. Remarkably, comparing
the top panels of Figures 10 and 5, we find the distribu-
tions of stable semimajor axes are nearly complementary.
Instead of being cleared out of mean-motion resonances,
stable parent bodies inhabit them exclusively when ini-
tial eccentricities equal zero.

The resonances—which include the 7:6, 6:5, 5:4, 9:7,
and 4:3, and which are of eccentricity-type—protect the
particles from close encounters with the planet. Quali-
tatively, the eccentricities and apsidal angles behave as
L-L predicts: while e cycles from 0 through max(e) =
2eforced ≈ 0.22 back to 0, ω̃ regresses from π/2 to
−π/2 (the evolution of ω̃ is discontinuous since e passes
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of semimajor axes of parent bodies that survive for 108 yr, time-
averaged over 105 yr. In stark contrast to our standard model
(Figure 5), survivors only inhabit mean-motion resonances, which
afford them protection from the close planetary encounters that
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Fig. 11.— Same as Figure 1, except for resonant parent bod-
ies. The left panel shows how resonant parent bodies avoid close
encounters with the planet. The entire pattern corotates with the
planet. Dust grains released from these resonant parent bodies
have large eccentricities and yield an optical depth profile too broad
to match that of K05; see Figure 10.

through 0). The large maximum eccentricities, which re-
sult because the free eccentricities are of the same magni-
tude as the forced eccentricities, put particles in danger of
close planetary encounters, especially when e = max(e)
and ω̃ = 0. Under these conditions, for a semimajor axis
of, say, a = 128 AU, the particle’s pericenter encroaches
within ∼2 AU ≈ 0.5RH of the planet’s pericenter.

However, thanks to resonance, conjunctions occur only
at special orbital phases and close encounters do not oc-
cur. For the circumstances just described, during the
phase that the particle attains maximum eccentricity, we
have observed in our numerical integrations that conjunc-
tions never occur at periastron. Because of the 7:6 reso-
nance, they occur instead 180◦ degrees away, at apoapse,
when the bodies are well separated by about 27 AU. Fig-
ure 11 provides a snapshot of stable resonant parent bod-
ies, showing how they avoid approaching the planet.

Can such resonant parent bodies be present in Fomal-
haut’s belt? Not in significant numbers compared to the
non-resonant population. The resonant bodies develop
more eccentric orbits, and consequently the dust they
produce is more spatially extended. From the bottom
panel of Figure 10 (see also the right-hand panel of Fig-
ure 11), it is clear that the optical depth profile of dust
released from resonant parent bodies is far too broad to
match that of K05. (Our procedure of calculating opti-
cal depths by smoothing particles over their orbits is not
correct for resonant objects, since the smoothing ignores
their special orbital phase relationships with the planet.
However the error accrued is small, since τ⊥ is domi-
nated by dust particles having β & 0.1. Such dust par-
ticles, upon release, have their semimajor axes increased
by & 10% by radiation pressure, and are thus removed
from the resonances inhabited by their parents.)

In §4.3 we discuss how the parent bodies might have
come to occupy nearly purely secularly forced orbits and
to avoid the resonant orbits.

4. SUMMARY AND DISCUSSION

We review our main results in §4.1; sketch the effects
of other planets apart from Fom b in §4.2; and discuss
possible origins of Fom b and the belt in §4.3.

4.1. Summary

Fomalhaut b is the first extrasolar planet candidate to
be directly imaged at visible wavelengths and to have its
orbital motion around its host star measured. The Fo-
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malhaut system also presents the first example of planet-
disk interaction at a young age. Surprises have been
immediate: Fomalhaut b has an unusually large orbital
radius of more than 110 AU (cf. Lafrenière et al. 2008),
and a visual (0.45–0.7 µm) luminosity that is not only 1–
2 orders of magnitude greater than atmospheric models
anticipated, but also time variable. Nevertheless, a chain
of arguments based on comparing the observed photome-
try with model exoplanet atmospheres leads Kalas et al.
(2008, K08) to infer that the mass of Fomalhaut b must
be less than about 3MJ.

The Fomalhaut system is all the more remarkable for
offering a means independent of model spectra to get at
Fom b’s mass: the star is encircled by a belt of dust
whose geometry is sensitive to the mass and orbit of
Fom b. At a system age of ∼200 Myr, detritus from
the formation of the Fomalhaut planetary system still
remains, and is gravitationally sculpted by Fom b. The
observed intrinsic ellipticity of the ring almost certainly
owes its origin to secular forcing by Fom b, which itself
resides on a similarly eccentric orbit in this interpreta-
tion (Wyatt et al. 1999; Quillen 2006). Another feature
of the belt likely influenced by Fom b is its inner edge.
The observed sharpness with which the belt truncates
reflects the sharp divide between stability and chaos at
the boundary of the planet’s chaotic zone, inside of which
first-order mean-motion resonances overlap and particle
orbits are short-lived (Wisdom 1980; Quillen 2006). Par-
ticles inside the zone quickly evolve onto planet-crossing
orbits and thereafter are perturbed onto escape trajec-
tories.11 Identifying the belt inner edge with the chaotic
zone boundary relates the distance between the planet
and the belt edge to the planet-star mass ratio.

Based on these and other theoretical ideas, we have
built a realistic dynamical model of the Fomalhaut
planet-belt system. Our goal is to calculate the spatial
distribution of dust generated from the collisional com-
minution of larger parent bodies, and to compare our
dust maps with the HST scattered light observations.
The model begins by using numerical integrations to es-
tablish an annulus of parent bodies—a.k.a., the “birth
ring” (Strubbe & Chiang 2006)—that is stable for 100
Myr against perturbations by Fom b. Dust particles are
released from these dynamically stable parents, and their
trajectories followed, taking additional account of stellar
radiation forces, for a dust collisional lifetime of tcol = 0.1
Myr. The orbits of dust particles at the end of a tcol-long
integration are assumed to represent well those of actual
dust particles, which in reality have a range of ages ex-
tending up to ∼tcol. We have subjected this assumption
to a few tests and found it to hold. Final dust parti-
cle orbits, computed for a range of radiation β’s (force
ratio between stellar radiation pressure and stellar grav-
ity), are converted into orbit-averaged maps of relative
surface density (number of grains per unit face-on area
of the belt). A Dohnanyi (1969) grain size distribution,
appropriate for a quasi-steady collisional cascade, is as-
sumed to hold in the birth ring, where the dust surface
density is highest and collision rate is greatest. This
assumption determines how we weight and add the sur-

11 We estimate that planet crossing takes ∼105(10−3/µ)4/7 yr
and ejection takes ∼107(10−3/µ)2 yr, for particles halfway between
the planet and the edge of the chaotic zone.

face density maps to produce a map of (relative) vertical
optical depth. That optical depth map—or rather its az-
imuthally averaged version, the variation of optical depth
with semimajor axis—is compared with the optical depth
profile of the Kalas et al. (2005) scattered light model,
which itself represents an idealized and approximate fit
to the HST images.

A conservative result of our dynamical model is that
Mpl < 3MJ. This conclusion, that Fom b must be
of planetary mass, is entirely independent of Fom b’s
photometry—and its uncertain interpretation. Our re-
sult stems from two simple and robust trends, neither of
which involve inner edge sharpness, in contrast to Q06.
First, as Mpl increases, dust particles are increasingly
perturbed by the planet onto more eccentric orbits, ren-
dering the dynamical profiles too broad compared to the
scattered light profile. A mass of 10MJ yields a belt that
is about twice as bright between 150 and 160 AU as the
observations allow, while lower masses Mpl < 3MJ give
optical depth profiles that we feel agree adequately well
with the Kalas et al. (2005) scattered light model. Sec-
ond, given the observed location of the inner edge of the
belt, larger mass planets have necessarily smaller orbits
located farther interior to the belt, and smaller orbits
may be incompatible with the observed stellocentric dis-
tance of Fom b. A mass of 10MJ requires an orbit whose
apocentric distance is 107 AU, falling well short of our
estimated de-projected distance for Fom b of 119 AU.
By contrast, for Mpl ≤ 1MJ, the model apocentric dis-
tances are ≥ 122 AU. While 3MJ yields an orbit whose
apocenter lies at 115 AU and is nominally incompati-
ble, uncertainties in the observed de-projected distance,
probably amounting to a few AU, preclude us from ruling
out this mass. Thus, erring on the safe side, we conclude
that Mpl < 3MJ. Corresponding to these masses are or-
bital semimajor axes apl > 101.5 AU and eccentricities
epl ≈ 0.11–0.13.

It is heartening to see that our preferred mass range
of Mpl < 3MJ supports that inferred from the spectral
models. And looking excitedly towards the future, we
can expect to pinpoint the mass more precisely by com-
bining our Mpl(apl) relation (see Table 1 and equation
16) with Fom b’s orbital semimajor axis once that is de-
termined from multi-epoch astrometry.

For a taste of what might come, here is a bolder,
less conservative analysis based on the limited data in
hand. Though the planet’s orbit cannot be de-projected
uniquely because its position has only been recorded
twice, the same is not true for the belt. The brightest
portions of the belt can be fitted to an apparent ellipse
on the sky, and that apparent ellipse can be uniquely
de-projected (K05; Smart & Green 1977). Then we can
proceed by assuming Fom b’s apparent orbit on the sky
is merely an isotropically scaled, miniature version of the
belt’s apparent ellipse, making sure that this scaled el-
lipse intersects the two recorded positions of Fom b. Fi-
nally this scaled ellipse can be de-projected using the
same de-projection solution derived from the belt. Such
a procedure yields an intrinsic semimajor axis for Fom
b’s orbit of 114.5 AU and—by extension using our equa-
tion (16)—a mass of 0.3–0.4MJ, where the range reflects
the 1 AU uncertainty in ainner (§3.1.4). But this analy-
sis is not complete, because the corresponding intrinsic
eccentricity of the scaled ellipse (0.11) is about 10% too
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small compared to what our dynamical models require
for the planet (see Table 1). If the planet were located
at apastron, increasing the eccentricity means that we
should reduce the semimajor axis, so as to still fit the
observed positions of Fom b. In fact, Fom b appears to
have a true anomaly of about 109 deg, so the implied
reduction in semimajor axis, and the consequent upward
revision of planetary mass, is slight. A more detailed
analysis is underway, but for now this preliminary and
model-dependent interpretation of the limited astrome-
try is consistent with a ≈ 114 AU and Mpl ≈ 0.4MJ. The
uncertainty on Mpl is difficult to gauge, but might span
a factor of 2 in either direction.

Our findings agree in broad outline with those of
Quillen (2006), whose prediction that the belt inner edge
be located at the boundary of the planet’s chaotic zone
is vindicated by the discovery of Fom b. We diverge
from Quillen (2006) in how we determine Fom b’s mass.
Among the improvements we make are: (1) we draw a
clear distinction between unobservable parent bodies and
observable dust grains, and rely on the latter when com-
paring with the HST scattered light observations; (2)
we include the effect of stellar radiation pressure, sig-
nificant for dust grains; (3) parent bodies are screened
for dynamical stability over the age of the system; and
(4) grain-grain collisions are recognized as destructive,
and therefore the duration of each of our dust particle
integrations is necessarily limited by the collision time.
Our upper mass limit of 3MJ follows, in part, from com-
paring theoretical and observed optical depth profiles of
dust, computed globally over all space, and from noting
how steep those profiles are both inside and outside of the
location of peak optical depth. By contrast, the upper
mass limit derived by Quillen (2006), ∼0.2MJ, follows
from an analysis of the radiation-free dynamics of col-
lisionless particles—essentially, the dynamics of parent
bodies—local to the chaotic zone boundary, and from the
assumption that the local velocity dispersion of such bod-
ies determines the sharpness of the inner belt edge. Our
calculation of the upper mass limit is preferred because
the HST observations are of dust, not of parent bodies,
and also because we have shown that edge sharpness is
better computed using a global model such as ours.

Perhaps the biggest deficiency of our model lies in our
crude treatment of grain collisions. In setting a dust
particle’s initial position and velocity equal to that of its
parent body, we ignore collisional dissipation and redi-
rection of orbital kinetic energy. We also neglect the fact
that grinding the largest parent bodies down to dust re-
quires multiple collisions, and that radiation effects can
start manifesting in the middle of the collisional cascade.
For example, a particle for which radiation effects are sig-
nificant, say which has β = 0.4, can be born from a par-
ent body for which radiation effects were also significant,
say which had β = 0.2. Still, our simple prescription of
releasing dust grains having β > 0 from bodies having
β = 0 is not without justification. Collisional energy dis-
sipation should, on average, dampen free eccentricities
but not forced eccentricities (see §4.3); thus the mean
elliptical shape of the belt is expected to be preserved.
Grain ejection velocities relative to the parent are dis-
tributed isotropically and should therefore not bias our
results, though they will produce larger free eccentrici-
ties than our model predicts. Larger free eccentricities

will result in smoother optical depth profiles: a blurring
of the belt (see §4.3 for further discussion of free eccen-
tricities). Finally, radiation effects are predominantly felt
over only the last decade in grain size above the blow-out
size, i.e., only after the penultimate collision just prior to
the final collision resulting in blow-out, for collisions that
are strongly disruptive. The next generation of models
should test these assertions, in addition to considering
qualitatively different physics (e.g., Yarkovsky drag, and
gas-particle interactions.12)

4.2. Other Planets In Addition to Fom b

While we have assumed throughout our study that
Fom b is the only planet in the Fomalhaut system, mul-
tiple planets are also compatible with the observed belt
eccentricity. In Laplace-Lagrange theory, the observed
forced eccentricity vector of a belt particle equals the
vector sum of n eccentricity vectors forced by n plan-
ets. Because the individual eccentricity vectors precess
at frequencies that depend only on the fixed masses and
semimajor axes of the planets (these are the fixed eigen-
frequencies of the linear theory), and because belt par-
ticles having similar semimajor axes have similar vector
decompositions, we expect the forced eccentricity vectors
of belt members to remain similar to one another over
time. Thus a narrow belt can maintain a global mean
eccentricity in the presence of multiple planets, though
that mean eccentricity will oscillate with time. All these
considerations can be accommodated if necessary into
our modelling procedure.

Nevertheless, given the observed proximity of Fom b to
the belt, a case can be made that Fom b dominates the
forced eccentricities of belt particles. A possible analogy
would be Neptune and the Kuiper belt. Despite the exis-
tence of as many as four giant planets in our solar system,
the forced inclination and eccentricity vectors of Kuiper
belt objects are largely determined by the nearest planet,
Neptune (see, e.g., Chiang & Choi 2008). If indeed Fom
b dominates the belt’s secular dynamics, then we expect
its orbit to be apsidally aligned with that of the belt. If
future astrometry reveals a significant apsidal misalign-
ment, then at least one other, as yet unseen planet would
be implicated. In that case, because the belt’s forced
eccentricity is a vector sum, Fom b’s eccentricity could
either be lower or higher than the eccentricity we have
calculated, depending on the apsidal orientation(s) of the
other planetary orbit(s).

How would additional planets affect our determination
of Fom b’s mass? Broadly speaking, more planets render
more of orbital phase space chaotic. Therefore Fom b, if
abetted by other planets, can have a smaller mass and
still truncate the belt at its observed inner edge. The
upper limit of 3MJ that we have calculated is, in this
sense, a hard upper limit.

Intriguingly, over its three-year mission, the Hippar-
cos satellite observed Fomalhaut to have an “anomalous”
proper acceleration of 6.6 milliarcsec/yr2. Such a quasi-
steady acceleration might be caused by a companion

12 Fomalhaut’s closest analogue may be AU Mic, insofar as both
have birth ring morphologies and similar optical depths (Strubbe &
Chiang 2006). Gas has not been detected in AU Mic (Brandeker et
al., 2008 Spitzer Science Conference Poster #81). The β Pic debris
disk, containing plenty of metallic gas (Brandeker et al. 2004),
remains an anomaly.
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whose orbital period is longer than ∼3 years, or equiv-
alently whose stellocentric distance r & 3 AU. Equating
the measured acceleration with (GM/r2)/d, where M is
the perturbing mass and d = 7.7 pc is the distance to Fo-
malhaut, we see that Fomalhaut might also be harboring
a ∼30MJ brown dwarf at a distance r ∼ 5 AU. (Larger
r implies larger M and such solutions are probably ruled
out by observation. Clearly Fom b cannot be responsible
for the Hipparcos acceleration.) Compared against the
influence of Fom b as we have computed it in this pa-
per, such a brown dwarf would contribute less than 10%
to the forced eccentricity of a belt particle, if the brown
dwarf’s eccentricity . 0.2.

4.3. Parent Body and Planet Origins

Though the direct detection of parent bodies is beyond
the reach of current observations, our study has provided
some evidence that they reside mostly on nearly purely
secularly forced orbits with small free eccentricities. In
principle, they do not have to; we found by experimenta-
tion in §3.3.3 that large free eccentricities are also com-
patible with long-term stability if the particles are pro-
tected by mean-motion resonances.

How did the parent bodies choose one class of stable
orbit over the other? The answer, as suggested also by
Quillen & Faber (2006), likely involves collisional dissi-
pation. Collisions dissipate random orbital motions and
compel planetesimals to conform towards closed, non-
intersecting orbits viewed in the frame rotating with the
perturbation potential (e.g., Paczynski 1977; Goldreich &
Tremaine 1982, section 5.4). If that perturbation poten-
tial arises from Fom b, the special closed orbits include
the secularly forced orbits that we have been highlight-
ing throughout our study, but they do not include the
resonant orbits that emerged from our experiment. Col-
lisional dissipation and relaxation onto closed orbits oc-
cur across the entire collisional cascade, up to the largest
parent bodies (which by definition collide once over the
system age).

We do not expect the destructive nature of collisions to
qualitatively alter this picture, since what is important
here is the dissipation of random kinetic energy, and that
occurs whether or not collisions are destructive. Post-

collision fragments will have free eccentricities that are
small compared to forced eccentricities, insofar as post-
collision fragment velocities (measured relative to the
center of mass) are small compared to eforcedΩRR ∼ 400
m/s. At least in the collisional genesis of the Eunomia
and Koronis asteroid families in our solar system’s main
belt, ejection velocities of the largest post-collision rem-
nants range from 4 to 90 m/s (Michel et al. 2001).

It is also possible that relaxation occurred while the
parent bodies were forming, when collisions were gentler
and agglomerative. The process of relaxation onto forced
orbits can be explored using fast numerical simulation
techniques for inelastically colliding, indestructible par-
ticles (Lithwick & Chiang 2007); in fact, we have started
to run such simulations and clearly observe relaxation.

What are the origins of Fom b and the belt? It seems
likely that the belt is what remains of the original disk
material that went into building Fom b. If we take the
minimum parent body mass of 3M⊕ (estimated in §2.6)
and augment it by a factor of 102 to bring it to cos-
mic composition, then the minimum primordial mass for
the belt is ∼1MJ. This is comparable to our estimated
upper mass limit for Fom b. A working hypothesis is
that Fom b accreted in situ from a primordial disk of
gas and dust; that the hydrogen gas of the original disk
has either accreted into planets or photoevaporated; and
that today the remaining solids in the belt are grinding
down to dust, the in-plane velocity dispersion of parent
bodies excited so strongly by Fom b that collisions are
destructive rather than agglomerative. The last tenet is
supported by our Figure 6, which shows free eccentric-
ity dispersions that imply relative parent body velocities
upwards of ∼100 m/s (see also our §2.3).
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TABLE 1
Possible Properties of Fom b and Numbers of Surviving Belt Particles
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a
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105 yr, following the 108-yr-long parent body integration.

b
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